next up previous
Next: Transference in Spaces of Up: Transference in Spaces of Previous: Sup Path Attaining Representations

Proof of the Main Theorem

Throughout this section, $ G$ denotes a locally compact abelian group with dual group $ \Gamma$; $ M(\Sigma)$ is a space of measures on a set $ \O$; and $ T=(T_t)_{t\in G}$ is a sup path attaining representation of $ G$ by isomorphisms of $ M(\Sigma)$.

If $ \phi$ is in $ L^\infty(G)$, write $ \left[ \phi\right]$ for the smallest weak-* closed translation-invariant subspace of $ L^\infty(G)$ containing $ \phi$, and let $ {\cal I}([\phi])={\cal I}(\phi)$ denote the closed translation-invariant ideal in $ L^1(G)$:

$\displaystyle {\cal I}(\phi)=\{f\in L^1(G): f*\phi=0\}.$

It is clear that $ {\cal I}(\phi)=\{f\in L^1(G): f*g=0, \forall g\in \left[\phi\right]\}$. The spectrum of $ \phi$, denoted by $ \sigma \left[\phi\right]$, is the set of all continuous characters of $ G$ that belong to $ \left[ \phi\right]$. This closed subset of $ \Gamma$ is also given by

$\displaystyle \sigma \left[\phi\right]=Z({\cal I}(\phi)).$ (13)

(See [14, Chapter 7, Theorem 7.8.2, (b), (c), and (d)].)

Remarks 3.1   (a) For a weakly measurable $ \mu\in M(\Sigma)$, since $ {\cal I}(\mu)$ is a closed ideal in $ L^1(G)$, it is translation-invariant, by [14, Theorem 7.1.2]. It follows readily that for all $ t\in G$,

$\displaystyle {\cal I}(T_t\mu)={\cal I}(\mu),$

and hence

$\displaystyle {\rm spec}_T (T_t(\mu))={\rm spec}_T (\mu).$ (14)

(b) Let $ \mu\in M(\Sigma)$ be weakly measurable and let $ E\in \Sigma$. It is clear that $ {\cal I}(\mu)\supset{\cal I}(t\mapsto (T_t\mu)(E))$. Thus $ \sigma\left[ t\mapsto (T_t\mu)(E)\right]\subset {\rm spec}_T(\mu)$.

Lemma 3.2   Let $ \mu\in{\cal M}_T(\Sigma)$.
(a) If $ g\in L^1(G)$ and $ E\in \Sigma$, then

$\displaystyle \int_G g(t)T_t\mu(E)\overline{\chi(t)}\,dt=0,$

for all $ \chi$ not in $ {\rm supp}(\widehat{g})+{\rm spec}_T(\mu)$.
(b) If $ \nu \in M(G)$, then

$\displaystyle {\rm spec}_T(\nu*_T\mu)\subset {\rm supp}(\widehat{\nu})\cap {\rm spec}_T(\mu)\,.$

(c) If $ (k_\alpha)$ is an approximate identity for $ L^1(G)$, then

$\displaystyle \Vert\mu\Vert _{M(\Sigma)}/C\leq \mathop{\hbox{\rm lim inf}}\limi...
...mapsto \Vert k_\alpha *_T T_t\mu\Vert _{M(\Sigma)}\right \Vert _{L^\infty(G)}, $

where $ C$ is as in (7).

Proof. (a) Fix $ E\in \Sigma$ and $ \chi\in\Gamma$, and let $ f(t)=(T_{-t}\mu)(E)\chi(t)$. Then $ \sigma\left[ f\right]\subset \chi -{\rm spec}_T(\mu)$. Hence, for $ g\in L^1(G)$ with supp$ (\widehat{g})\cap (\chi-{\rm spec}_T\mu)=\emptyset$, we have

$\displaystyle \int_Gg(t)(T_t\mu)\overline{\chi}(t)dt=(g*f)(0)=0\,.$

(b) Immediate from $ {\cal I}(\nu*_T\mu)\supset {\cal I}(\nu)\cup{\cal I}(\mu)\,.$

(c) Fix $ h$ on $ \Omega$ with $ \vert h\vert\leq 1$ and let $ f(t)=\int_\Omega
h(x)d(T_t\mu(x))$. Then $ f\in L^\infty(G)$ and so, if $ (k_\alpha)$ is an approximate identity for $ L^1(G)$, then $ k_\alpha *f\rightarrow f$ in the weak $ *$-topology of $ L^\infty(G)$. Hence

$\displaystyle \Vert f\Vert _\infty\leq \mathop{\hbox{\rm lim inf}}\limits \Vert k_\alpha *f\Vert _\infty$ $\displaystyle =$ $\displaystyle \mathop{\hbox{\rm lim inf}}\limits \left\Vert t\rightarrow \int_\Omega h(x)d(k_\alpha*_T T_t\mu) \right\Vert _\infty$  
  $\displaystyle \leq$ $\displaystyle \mathop{\hbox{\rm lim inf}}\limits \left\Vert t\rightarrow \Vert k_\alpha*_T T_t\mu\Vert \right\Vert _\infty\,.$  

The proof is completed by taking the sup of $ \Vert f\Vert _\infty$ over all $ h$ and using (7).

Lemma 3.3   Let $ f:\ G\rightarrow M(\Sigma)$ be bounded and continuous, and let $ \nu \in M(G)$. Suppose that
(i) for all $ E\in \Sigma$, $ t\mapsto f(t)E$ is in $ L^1_S(G)$;
(ii) for all $ g\in L^1_S(G),\ \Vert\nu*g\Vert _1\leq \Vert g\Vert _1\,.$
Then

$\displaystyle \int_G\Vert(\nu*f)(t)\Vert _{M(\Sigma)}dt\leq \int_G \Vert f (t)\Vert _{M(\Sigma)}dt\,.$ (15)

Proof. We suppose throughout the proof that the right side of (15) is finite; otherwise there is nothing to prove. Write $ f_E(t)=f(t)E$. Thus

$\displaystyle (\nu*f)(t)E=(\nu*f_E)(t)$

is continuous on $ G$. By (i) and (ii),

$\displaystyle \int_G\vert(\nu*f)(t)E\vert dt\leq \int_G\vert f(t)E\vert dt,$ (16)

for all $ E\in \Sigma$. Now let $ P=\{E_j\}$ be a finite measurable partition of $ \Omega$, and define

$\displaystyle h(P,t)= \sum_j\vert(\nu*f)(t)E_j\vert\,.$

Then $ h(P,\cdot)$ is continuous on $ G$ and, by (16),

$\displaystyle \int_G h(P,t)dt=\sum_j\int_G\vert(\nu*f)(t)E_j\vert dt \leq \int_G\Vert f(t)\Vert _{M(\Sigma)}dt\,.$ (17)

If $ R$ is a common refinement of $ P$ and $ Q$, then, for all $ t$,

$\displaystyle \max\{h(P,t),h(Q,t)\}\leq h(R,t)\,.$

It follows from [12, (11.13)] that
$\displaystyle \int_G\Vert\nu*f\Vert _{M(\Sigma)}dt$ $\displaystyle =$ $\displaystyle \int_G \sup_Ph(P,t)dt$  
  $\displaystyle =$ $\displaystyle \sup_P\int_G h(P,t)dt \leq \int_G\Vert f(t)\Vert _{M(\Sigma)}dt$  

by (17).

Proof of Theorem 1.6. Let $ f(t)=T_t\mu$ and suppose first that $ f$ is continuous and that there is a neighborhood $ V$ of $ 0\in\Gamma$ such that $ V+{\rm spec}_T(\mu)\subset S$. Choose a continuous $ g\in L^1(G)$ such that

$\displaystyle g\geq 0;$

$\displaystyle \widehat{g}(0)= \int_G g(t)dt=1;$

and

$\displaystyle {\rm supp}(\widehat{g})\subset V\,. $

Then, for all $ E\in \Sigma$, the mapping $ t\mapsto g(t)f(t)E$ is bounded and continuous on $ G$, and, by Lemma 3.2, belongs to

$\displaystyle L^1_{{\rm supp}(\widehat{g})+{\rm spec}_T(\mu)}\subset L^1_{V+{\rm spec}_T(\mu)}\subset L^1_S\,.$

Hence Lemma 3.3 implies that

$\displaystyle \Vert\nu*(gf)\Vert _{L^1(G,M(\Sigma))}\leq \Vert gf\Vert _{L^1(G,M(\Sigma))}\,.$ (18)

We now proceed to show that (10) is a consequence of (18). We start with the right side of (18):
$\displaystyle \Vert gf\Vert _1$ $\displaystyle =$ $\displaystyle \int_Gg(t)\Vert f(t)\Vert dt$  
  $\displaystyle \leq$ $\displaystyle c \Vert\mu\Vert \int_Gg(t) dt =c \Vert\mu\Vert.$ (19)

Consider now the left side of (18). We have
$\displaystyle \Vert\nu *(gf)\Vert _1$ $\displaystyle =$ $\displaystyle \int_G\Vert\nu *(gf)(t)\Vert dt$  
  $\displaystyle =$ $\displaystyle \int_G\Vert\int_G (gf) (t-s)d\nu(s)\Vert dt$  
  $\displaystyle =$ $\displaystyle \int_G\Vert\int_G g (t-s) T_{t-s} \mu
d \nu (s)\Vert dt$  
  $\displaystyle \geq$ $\displaystyle \frac{1}{c}
\int_G\Vert\int_G T_{-t}\left[ g (t-s) T_{t-s} \mu
\right]
d \nu (s)\Vert dt$  
  $\displaystyle =$ $\displaystyle \frac{1}{c}
\int_G\Vert\int_G g (t-s) T_{-s} \mu
d \nu (s)\Vert dt$  
  $\displaystyle \geq$ $\displaystyle \frac{1}{c}
\Vert \int_G \int_G g (t-s) d t
T_{-s} \mu
d \nu (s)\Vert$  
  $\displaystyle =$ $\displaystyle \frac{1}{c} \widehat{g}(0)
\Vert \int_G
T_{-s} \mu
d \nu (s)\Vert$  
  $\displaystyle =$ $\displaystyle \frac{1}{c}
\Vert \nu*_T \mu \Vert.$ (20)

Inequalities (18), (19), and (20) imply that

$\displaystyle \Vert\nu*_T\mu\Vert\leq c^2 \Vert\mu\Vert\,.$ (21)

Now fix $ \epsilon>0$ and let $ k\in L^1(G)$ be such that $ \widehat{k}$ has compact support in $ \Gamma$. We have by Lemma 3.2

$\displaystyle {\rm spec}_T (k*_T \mu)\subset$   supp$\displaystyle (\widehat{k}) \cap {\rm spec}_T(\mu)\,.$

Moreover, the set $ \{\gamma\in\Gamma:\ \int_G\vert 1-\gamma\vert d\vert\nu\vert<\epsilon\}$ is a neighborhood of $ 0\in\Gamma$. Hence, by the hypothesis on $ S$, there is a neighborhood $ V$ of 0 in $ \Gamma$ and $ \gamma\in\Gamma$ such that

$\displaystyle \int_G\vert 1-\gamma\vert d\vert\nu\vert<\epsilon$   and$\displaystyle \quad V+{\rm spec}_T(k*_T\mu)\subset S-\gamma\,.$

If $ h\in L^1_{S-\gamma}$, then $ \gamma h\in L^1_S$; hence

$\displaystyle \Vert(\overline{\gamma}\nu)*h\Vert _1=\Vert\nu*(\gamma h)\Vert _1\leq \Vert\gamma h\Vert _1=\Vert h\Vert _1, $

for all $ h\in L^1_{S-\gamma}$. Since translation in $ L^1(G)$ is continuous, it follows that the map $ t\mapsto T_t(k*_T\mu)$ is continuous, and hence we obtain from (21),

$\displaystyle \Vert(\overline{\gamma}\nu)*_T(k*_T\mu)\Vert\leq c^2\Vert k*_T\mu\Vert\,.$

As $ \Vert\overline{\gamma}\nu-\nu\Vert<\epsilon$ and $ \epsilon$ is arbitrary, we get

$\displaystyle \Vert k*_T(\nu*_T\mu)\Vert=\Vert\nu*_T(k*_T\mu)\Vert\leq c^2\Vert k*_T\mu\Vert\leq c^3\Vert\mu\Vert\,.$

Letting $ k$ run through an approximate identity of $ L^1(G)$ and using Lemma 3.2, we obtain $ \Vert \nu*_T\mu \Vert\leq Cc^3\Vert\mu\Vert$.


next up previous
Next: Transference in Spaces of Up: Transference in Spaces of Previous: Sup Path Attaining Representations
Stephen Montgomery-Smith 2002-10-30