next up previous
Next: Bibliography Up: Measuring the magnitude of Previous: norms


Rearrangement invariant spaces

Rearrangement invariant spaces are studied in much of the literature, see for example Lindenstrauss and Tzafriri (1977). However, we will work with a definition that is a little less restrictive. A rearrangement invariant space on the random variables is a quasi-normed Banach space $ {\cal L}$ of random variables such that $ 1 \in {\cal L}$, and if $ X^* \le Y^*$ and $ Y
\in {\cal L}$, then $ X \in {\cal L}$ and $ {\left\Vert X\right\Vert}_{\cal L}\le {\left\Vert Y\right\Vert}_{\cal L}$. Obviously the spaces $ L_p$ for $ 0<p\le \infty$ are rearrangement invariant spaces.

Given a rearrangement invariant space $ {\cal L}$, we define the quasi-constant of $ {\cal L}$ to be the least constant $ K>0$ such that $ {\left\Vert X+Y\right\Vert}_{\cal L}\le K({\left\Vert X\right\Vert}_{\cal L}+ {\left\Vert Y\right\Vert}_{\cal L})$ for all $ X,Y \in {\cal L}$. Notice that if $ X^*(2t) \le Y^*(t)$, and $ Y
\in {\cal L}$, then $ X$ may be written as the sum of two disjoint random variables $ Y_1$ and $ Y_2$ with $ Y_1^*(t),Y_2^*(t) \le Y^*(t)$, and hence $ {\left\Vert X\right\Vert}_{\cal L}\le 2K {\left\Vert Y\right\Vert}_{\cal L}$.

Given two rearrangement invariant spaces $ {\cal L}$ and $ {\cal M}$, we will say that $ {\cal L}$ embeds into $ {\cal M}$ if there is a positive constant $ c$ such that if $ X \in {\cal L}$, then $ X \in {\cal M}$ and $ {\left\Vert X\right\Vert}_{\cal M}\le c {\left\Vert X\right\Vert}_{\cal L}$. We will call the least such $ c$ the embedding constant of $ {\cal L}$ into $ {\cal M}$.

Theorem 7.1   Let $ p_0>0$, and let $ {\cal L}$ be a rearrangement invariant space such that $ {\cal L}$ embeds into $ L_p$, and $ L_q$ embeds into $ {\cal L}$, where $ q \ge p \ge p_0$. Then there is a positive constant $ c$, depending only upon the quasi-constant of $ {\cal L}$, the embedding constants, $ p_0$ and $ q/p$, such that for any sequence of Banach valued independent random variables $ (X_n)$

$\displaystyle c^{-1}({\left\Vert U\right\Vert}_p + {\left\Vert\ell\right\Vert}_...
... L}\le
c({\left\Vert U\right\Vert}_p + {\left\Vert\ell\right\Vert}_{\cal L}) .$


Proof: Let us first obtain the left hand side inequality. It follows by hypothesis that $ {\left\Vert U\right\Vert}_{\cal L}\ge c_1^{-1}
{\left\Vert U\right\Vert}_p$, where $ c_1$ is the embedding constant of $ {\cal L}$ into $ L_p$. Furthermore, $ U \ge {\frac{1}{ 2}} M$, and by Proposition 2.1, $ \ell(t) \le M^*(2t)$. Hence $ {\left\Vert U\right\Vert}_{\cal L}\ge (4K)^{-1}
{\left\Vert\ell\right\Vert}_{\cal L}$, where $ K$ is the quasi-constant of $ {\cal L}$.

Now let us obtain the right hand inequality. By Corollary 3.2, we have that there is a universal positive $ c_2$ for $ 0 \le t \le
1$

$\displaystyle U^*(t) I_{0\le t \le 2^{-2q/p}} \le c_2 {\frac{2q }{ p}}
(U^*(t^{p/2q}) +
M^*(t/2)). $

Now $ U^*(t) I_{0\le t \le 2^{-2q/p}} \ge U^*(2^{2q/p}
t)$, and hence

$\displaystyle {\left\Vert U\right\Vert}_{{\cal L}} \le (2K)^{\lceil 2q/p \rceil...
...o U^*(t^{p/2q})\mathclose\Vert}_{\cal L}+ {\left\Vert M\right\Vert}_{\cal L}) .$

To finish the proof, suppose that $ {\left\Vert U\right\Vert}_p = \lambda$. Then it is easily seen that $ U^*(t) \le \lambda t^{-1/p}$. Thus, if $ c_3$ is the embedding constant of $ L_q$ into $ {\cal L}$, then
$\displaystyle {\mathopen\Vert t\mapsto U^*(t^{p/2q})\mathclose\Vert}_{\cal L}$ $\displaystyle \le$ $\displaystyle c_3 {\mathopen\Vert t\mapsto U^*(t^{p/2q})\mathclose\Vert}_q$  
  $\displaystyle =$ $\displaystyle c_3 \left(\int_0^1 (U^*(t^{p/2q}))^q \, dt \right)^{1/q}$  
  $\displaystyle \le$ $\displaystyle c_3 \lambda \left(\int_0^1 t^{-1/2} \, dt\right)^{1/q}$  
  $\displaystyle =$ $\displaystyle 2^{1/q} c_3 \lambda .$  


next up previous
Next: Bibliography Up: Measuring the magnitude of Previous: norms
Stephen Montgomery-Smith 2002-10-30