next up previous
Next: The decay of Up: A counterexample to the Previous: Properties of the operator

Construction of the Fluid Flow

We will consider the following vector field in cylindrical coordinates:

\begin{displaymath}
{\mathbf{u}}_s = {\mathbf{u}}= (0, u_\theta(r,z,t), 0)
\end{displaymath} (4.1)

with $u_\theta(r,z,t) = \alpha (r) \beta (\vert z\vert) \gamma _s(t) r$, where

\begin{displaymath}
\begin{array}{l}
\begin{array}{rlllrlllll}
\alpha (r) &= 0 &...
...0^{t_0} \gamma _s(\tau) d \tau = s \in
[0,2\pi]\, .
\end{array}\end{displaymath}

The vector field ${\mathbf{u}}$ from (4.1) is divergence free and smooth (in Cartesian coordinates $(x,y,z)$). Evidently, there exist ${\mathbf{f}}^E$ and ${\mathbf{f}}^N$, smooth axially symmetric vector fields such that ${\mathbf{u}}$ satisfies (with constant pressure) the Euler equations and the Navier-Stokes equations, respectively.

In the cylinder $\vert z\vert\leq Z_i$, $r\leq R_i$ it corresponds to the rotation by the angle $s$ during the time interval $[0,t_0]$ and outside of the cylinder $\vert z\vert\leq Z^o$, $r\leq R^o$ the fluid does not move at all.

Let us start by analyzing $\mathbf{A}^E$. This is actually quite easy to compute explicitly. Writing the input vector in cylindrical coordinates, and the output in Cartesian coordinates, we have

\begin{displaymath}
\mathbf{A}^E(r,z,\vartheta , t_0) = \Big(r \cos [\vartheta -...
...r \sin[\vartheta - s \alpha (r) \beta (\vert z\vert) ], z\Big)
\end{displaymath}

that is,

\begin{displaymath}
\begin{array}{lcr}
\mathbf{A}^E(x,y,z,t_0)& = &\Big( x \cos[...
...qrt{x^2+ y^2})
\beta (\vert z\vert) ] , z \Big)\, .
\end{array}\end{displaymath}

Inside the inner cylinder we have

\begin{displaymath}
\nabla \mathbf{A}^E =
\left( \begin{array}{ccc}
\cos s, & \s...
...-\sin s, & \cos s, & 0 \\
0, & 0, & 1 \end{array} \right)\, ;
\end{displaymath}

outside the outer cylinder

\begin{displaymath}
\nabla \mathbf{A}^E =
\left( \begin{array}{ccc}
1, & 0, & 0 \\
0, & 1, & 0 \\
0, & 0, & 1 \end{array} \right)\, ;
\end{displaymath}

for $\vert z\vert\leq Z_i$, $R_i \leq r\leq R^o$

\begin{displaymath}
\nabla \mathbf{A}^E =
\left( \begin{array}{ccc}
\cos [s \alp...
..., & 0,& 1 \end{array} \right) + {\mathbf{M}}_1 +{\mathbf{M}}_2
\end{displaymath}

with

\begin{displaymath}
\begin{array}{l}
{\mathbf{M}}_1 =
\left( \begin{array}{ccc}
...
...a '(r), & 0 \\
0, & 0, & 0 \end{array} \right)\, ;
\end{array}\end{displaymath}

for $Z_i\leq \vert z\vert\leq Z^o$, $r\leq R_i$

\begin{displaymath}
\nabla \mathbf{A}^E =
\left( \begin{array}{ccc}
1, & 0, & -s...
...] \beta '(\vert z\vert)\\
0, & 0, & 1 \end{array} \right)\, ;
\end{displaymath}

and finally for $Z_i\leq \vert z\vert\leq Z^o$, $R_i \leq r\leq R^o$ we get a combination of the last two cases. We will use the structure of $\nabla \mathbf{A}^E$ later.


Let us now look at the difference between $\mathbf{A}^N$ and $\mathbf{A}^E$, our goal being inequality (4.3) below. We have

\begin{displaymath}
\begin{array}{c}
\displaystyle \frac {\partial }{\partial t}...
...mathbf{A}^{E})({\mathbf{x}}, 0) = {\mathbf {0}}\, .
\end{array}\end{displaymath}

Taking the spatial gradient we get
\begin{displaymath}
\frac {\partial }{\partial t} [\nabla (\mathbf{A}^N - \mathb...
... - (\nabla (\mathbf{A}^N-\mathbf{A}^E))\nabla {\mathbf{u}}\, .
\end{displaymath} (4.2)

Now, since

\begin{displaymath}
\sup _{t \in [0,t_0]}\Vert\nabla ^3 \mathbf{A}^N\Vert _p \leq C (\Vert\nabla {\mathbf{u}}\Vert _{k,p})
\end{displaymath}

for some $k$ sufficiently large, we have, after testing equation (4.2) by $\vert\nabla (\mathbf{A}^N-\mathbf{A}^E)\vert^{p-2}\nabla (\mathbf{A}^N - \mathbf{A}^E)$

\begin{displaymath}
\frac{d}{dt} \Vert\nabla (\mathbf{A}^N-\mathbf{A}^E)\Vert _p...
...rt _\infty \Vert\nabla (\mathbf{A}^N-\mathbf{A}^E)\Vert _p\, .
\end{displaymath}

Thus, as $\nabla (\mathbf{A}^N-\mathbf{A}^E)({\mathbf{x}},0) = {\mathbf {0}}$, we get
\begin{displaymath}
\sup _{t \in [0,t_0]} \Vert\nabla (\mathbf{A}^N-\mathbf{A}^E)\Vert _p \leq \nu
C(\Vert\nabla {\mathbf{u}}\Vert _{k,2}, t_0)
\end{displaymath} (4.3)

for all $p\in (1,\infty]$.


next up previous
Next: The decay of Up: A counterexample to the Previous: Properties of the operator
Stephen Montgomery-Smith 2002-10-25