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A binary number of n bits consists of an ordered sequence of n digits
taken from the set {0, 1}. A sequence is said to be an unforgeable marker if all
subsequences of consecutive digits starting at the left-hand end are dissimilar
from the sequence of the same length which ends at the right-hand end.
Unforgeable marker sequences are so called because, when misaligned in a
shift-register or other view port of the correct length, there is no possibility of
adjacent random digits impersonating the true sequence. Such sequences are
used for frame alignment purposes in serial data communications systems [1].
In many communications systems, the unforgeable marker is also a ‘comma
sequence’ in that it is guaranteed not to occur in any aligned or misaligned
view of the data between the markers, but this relies on constraints on the
data and does not impact on whether a sequence is an unforgeable marker
or not

A sequence which is unforgeable with respect to right-hand misalignment
is also unforgeable with respect to left-hand misalignment, and so there is a
single set of unforgeable sequences of a given length.

It is useful to denote a particular sequence by a decimal number by weight-
ing its digits with power of 2 in the conventional way. We can then concisely
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tabulate the unforgeable sequences for n up to 6.

n=1:
n=2:
n=3:
n =4:
n=>a:
n = 6:

{0,1}

{1,2}

{1,3,4,6}

{1,3,7,8,12,14}

{1,3,5,7,11,15, 16, 20, 24, 26, 28, 30}

{1,3,5,7,11,13, 15,19, 23, 31, 32, 40, 44, 48, 50, 52, 56, 58, 60, 62}

There is an even number of elements in each set because if a number is
unforgeable, so is the sequence obtained by complementing every digit. This
property is useful in NRZI (non-return to zero invert on ones) modulation
since, in general, the absolute polarity of the sequence will not be known by
the decoding hardware.

Number of Unforgeable Sequences

Let us write F'(n) for the number of unforgeable sequences of length n. We
give a table of values for F'(n) for values of n between 1 and 20.

It is also of interest to consider what percentage of all sequences of length
n are unforgeable, and we will denote this proportion by p(n). Thus p(n) =

n_ | F(n) | pn) n | F(n) | pn)

1 2 100.00% 11| 568 | 27.73%
2 2 50.00% 12 | 1116 | 27.25%
3 4 50.00% 13| 2232 | 27.25%
4 6 37.50% 14 | 4424 | 27.00%
5 12 37.50% 15| 8848 | 27.00%
6 20 31.25% 16 | 17622 | 26.89%
7| 40 31.25% 17 | 35244 | 26.89%
8 74 28.91% 18 | 70340 | 26.83%
9 | 148 | 28.91% 19 | 140680 | 26.83%
10 | 284 | 27.73% 20 | 281076 | 26.81%

We see that the p(n) is decreasing as n gets larger, and that it seems to

converge to a non-zero limit as n tends to infinity. In fact, as we shall show,
this is indeed the case, and the limit is about 26.78%. We give a very precise
value for this limit in the appendix.



Calculation of the Number of Unforgeable Sequences

We have a recurrence relation for F'(n) given by

2 forn=1
F(n)=4¢ 2F(n—1)— F(n/2) for n even
2F(n—1) otherwise.

The proof is by induction on n. The cases n = 1 and n = 2 are taken from
the previous tabulation. Let us assume that the recurrence relation holds for
n—2andn—1.

If n is odd, we can put n = 2m + 1. Now the sequence of length n

L1, 225 -5 Tm—1, Tmy Tmt1y -y Tn
is not forgeable if and only if the sequence of length n — 1
L1y,L2y5 eeey Tm—1y Lnt1s ---y L

is not forgeable (where z,, can be either 0 or 1). Therefore there are two
unforgeable sequences of length n for every unforgeable sequence of length
n — 1, that is, F(n) = 2F(n — 2).

If n is even, we can put n = 2m. It is sufficient to show that

F(n) =4F(n—2) — F(n/2)
It is clear that the sequence of length n
L1y X2y ey o1y Ty Lot 1y -y Ty
is not forgeable if and only if both
1. the sequence of length n — 2
X1, X2, ooy Ty 1y Tt 1y -y T
is not forgeable and,
2. the two sequences of length m
X1, T2, ey Typ—1 aNd Tppyq, ..., Ty

are not the same.



The number of times condition (1) is satisfied is 4F (n —2) since z,,, and @, 11
may freely range over the values 0 and 1. So it only remains to show that
the number of times condition (1) is satisfied while condition (2) is not, is
given by F'(n/2). However, condition (1) is true while condition (2) is not if
and only if the following two subsidiary conditions are met

1. zy, 29, ..., 1 and 41, ..., T, are the same, and
2. the sequence x1, 9, ..., T,, is unforgeable.

This happens F'(m) times as x1, T3, ..., T, range over all possible values, and

F(m) = F(n/2).

Generating Sets of Unforgeable Sequences

A side-product of this proof is a straightforward procedure for generating
unforgeable sequences.

If X(n) is the set of unforgeable sequences of length n, then for odd n
we can generate X (n) from X (n — 1) as follows. There are twice as many
elements in X(n) as X(n — 1) and they can be generated by taking each
sequence from X (n— 1), splitting it in half and then twice rebuilding it, once
with a zero in the middle and once with a one.

For even n, we can generate X (n) from X (n—2) by splitting each sequence
from X (n—2) and putting a two digit sequence between the two halves. This
gives four times as many elements as in X (n — 2), but some of the new ones
are forgeable and must be removed. These are the ones where the first half
of the sequence is the same as the second half of the sequence or the half
sequences themselves are forgeable (not elements of X(n/2)).

A Convenient Test for Unforgeability

This C routine gives returns a non-zero value if the sequence held in the low
order bitwidth bits of x is unforgeable.

int unforgeable(long x, int bitwidth)
{
long masklo, i, lo=x, hi=x;
masklo = (1<<bitwidth)-1;
for(i=1;i<bitwidth;i++)



masklo >>= 1;
lo = lo & masklo;
hi = (hi>>1) & masklo;

if (hi==lo)
return O;
}
return 1;

by

Appendix: Derivation of the “26.78%”

We observed in the table above that p(n) converges to a limit, which we will
denote p. In fact, p can be calculated to a very high precision using the
following, rapidly converging, infinite series:

2 2-8 2-8-128 2-8-128- 32768

P T T 7 aar TT i 32mer 712732167 (29 —1)

n=1 m=2

~ 0.26778684021788911237667140358430255255505989799348

We will prove this formula. First, an easy argument shows that the sequence
p(n) is a decreasing sequence, bounded below by zero. Hence the limit p
exists. Now define a generating function

h(z) =Y F(n)x".

It is clear that h(z) has radius of convergence at least 1/2.
Next, we show that

p= x1/1111}2(1 — 2x)h(x).

To see this, multiply out to obtain
(1—2x)h(z) = F(L)z + » (F(n) = 2F(n — 1))a",
n=2
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and thus
Zl/lrl%(l —2z)h( )+ Z p(n—1)),

which may be seen to be a telescoping series that converges to p.
Applying the recurrence relation for the sequence F'(n), we see that

h(z) = 2z+ ) 2F(n—1)a"— Y F(n/2)z"

n even

= 2x+ Z 2F (n)x"t — Z F(n)x?
n=1 n=1

= 21+ 2xh(x) — h(x?),
that is
(1 —2z)h(z) = 22 — h(2?).
We see immediately that

p= ml}rl%(l —2z)h(x) =1 — h(

Applying this relation again, we get that
h(3) =1—2h(%).

).

=

Again, we see that

h(i) =

16

D“

(5 — (35))
= ( 1 (2 (@)))

= ?(% - E—i(% — Saar (2 — P(272)))

~Jl0o 0o
|~ ool

Continuing in this way, and multiplying out, we see that

p = i(—wl <22+%71—1) (ﬁ %>

n=1 m=2
N+2 B 22m—1
N —oN+
+ (=1)N2h(2 ) (H m) .
m=2

Letting N — oo, and noting that h(272""") — h(0) = 0, it is readily seen
that the last term in the above expression converges to zero, and hence we
obtain the formula for p that we stated above.
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