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Abstract. If φ is a submeasure satisfying an appropriate lower estimate we give a quan-
titative result on the total mass of a measure µ satisfying 0 ≤ µ ≤ φ. We give a dual result
for supermeasures and then use these results to investigate convexity on non-locally convex
quasi-Banach lattices. We then show how to use these results to extend some factorization
theorems due to Pisier to the setting of quasi-Banach spaces. We conclude by showing that
if X is a quasi-Banach space of cotype two then any operator T : C(Ω)→ X is 2-absolutely
summing and factors through a Hilbert space and discussing general factorization theorems
for cotype two spaces.

1. Introduction.
Let A be an algebra of subsets of some set Ω. Let us say that a set-function φ : A → R

is monotone if it satisfies φ(∅) = 0 and φ(A) ≤ φ(B) whenever A ⊂ B. We say φ is
normalized if φ(Ω) = 1. A monotone set-function φ is a submeasure if

φ(A ∪B) ≤ φ(A) + φ(B)

whenever A,B ∈ A are disjoint, and φ is a supermeasure if

φ(A ∪B) ≥ φ(A) + φ(B)

whenever A,B ∈ A are disjoint. If φ is both a submeasure and supermeasure it is a (finitely
additive) measure.

If φ and ψ are two monotone set-functions on A we shall say that φ is ψ-continuous
if limn→∞ φ(An) = 0 whenever limn→∞ ψ(An) = 0. If φ is ψ−continuous and ψ is
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φ−continuous then φ and ψ are equivalent. A monotone set-function φ is called exhaustive
if limn→∞ φ(An) = 0 whenever (An) is a disjoint sequence in A. The classical (unsolved)
Maharam problem ([1], [5], [6] and [15]) asks whether every exhaustive submeasure is
equivalent to a measure. A submeasure φ is called pathological if whenever λ is a measure
satisfying 0 ≤ λ ≤ φ then φ = 0. The Maharam problem has a positive answer if and only
if there is no normalized exhaustive pathological submeasure.

While the Maharam problem remains unanswered, it is known (see e.g. [1] or [15])
that there are non-trivial pathological submeasures. In the other direction it is shown in [6]
that if φ is a non-trivial uniformly exhaustive submeasure then φ cannot be pathological. φ
is uniformly exhaustive if given ε > 0 there exists N ∈ N such that whenever {A1, . . . , AN}
are disjoint sets in A then

min
1≤i≤N

φ(Ai) < ε.

Let us say that a monotone set-function φ satisfies an upper p-estimate where 0 <

p < ∞ if φp is a submeasure, and a lower p-estimate if φp is a supermeasure. If φ is a
normalized submeasure which satisfies a lower p-estimate for some 1 < p < ∞ then φ

is uniformly exhaustive and hence by results of [6] there is a non-trivial measure λ with
0 ≤ λ ≤ φ. In Section 2 we prove this by a direct argument which yields a quantitative
estimate that λ can be chosen so that

λ(Ω) ≥ 2(2p − 1)−1/p − 1.

Notice that the expression on the right tends to one as p→ 1 so this result can be regarded
for p close to 1 as a perturbation result. The dual result for supermeasures (Theorem 2.2)
is that if a normalized supermeasure φ satisfies an upper p-estimate where 0 < p < 1 then
there is a φ−continuous measure λ with λ ≥ φ and

λ(Ω) ≤ 2(2p − 1)−1/p − 1.

While we believe these results with their relatively simple proofs have interest in their
own right, one of our motivations for considering them was to use them in the study of
some questions concerning quasi-Banach lattices, or function spaces.

It is well-known ([7]) that a Banach lattice X with a (crude) upper p-estimate is r-
convex for every 0 < r < p (for the definitions, see Section 3). This result does not hold
for arbitrary quasi-Banach lattices [2]; a quasi-Banach lattice need not be r-convex for
any r < ∞. However, it is shown in [2] that if X has a crude lower q-estimate for some
q <∞ then the result is true. We provide first a simple proof of this fact, only depending
on the arguments of Section 2. We then investigate this result further, motivated by the
fact that if X satisfies a strict upper p-estimate (i.e. with constant one) and a strict lower
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p-estimate then X is p-convex (and in fact isometric to an Lp(µ)−space.) We thus try to
estimate the constant of r-convexity M (r)(X) when 0 < r < p and X has a strict upper
p-estimate and a strict lower q-estimate where p, q are close. We find that an estimate of
the form

logM (r)(X) ≤ cθ(1 + | log θ|)

where c = c(r, p) and θ = q/p − 1. We show by example that such an estimate is best
possible. Let us remark that in the case r = 1 < p < q the constant M (1)(X) measures
the distance (in the Banach-Mazur sense) of the space X from a Banach lattice.

Finally in Section 4 we apply these results to give extensions of some factorization
theorems of Pisier [13] to the non-locally convex setting. Pisier showed the existence of a
constant B = B(p) so that if X is a Banach space and T : C(Ω)→ X is bounded satisfying
for a suitable constant C and all disjointly supported functions f1, . . . , fn ∈ C(Ω)(

n∑
k=1

‖Tfk‖p
)1/p

≤ C max
1≤k≤n

‖fk‖

then there is a proabability measure µ on Ω so that for f ∈ C(Ω)

‖Tf‖ ≤ BC‖f‖Lp,1(µ)

where Lp,1(µ) denotes a the Lorentz space Lp,1 with respect to µ.
Pisier’s approach in [13] uses duality and so cannot be used in the case when X is a

quasi-Banach space. Nevertheless the result can be extended and we prove that if 0 < r < 1
there is a constant B = B(r, p) so that if X is r-normable then there exists a probability
measure µ so that for all f ∈ C(Ω),

‖Tf‖ ≤ BC‖f‖Lp,r(µ).

We apply these results to show if X is a quasi-Banach space of cotype two then any
operator T : C(Ω)→ X is 2-absolutely summing and so factorizes through a Hilbert space.
We conclude by presenting a dual result and make a general conjecture that if X and Y

are quasi-Banach spaces such that X∗ and Y have cotype two and T : X → Y is an
approximable linear operator then T factorizes through a Hilbert space.

2. Submeasures and supermeasures.
Let us define for 0 < p <∞,

Kp =
2

(2p − 1)1/p
− 1.
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Notice that for p close to 1 we have Kp ∼ 1 − 4(p − 1) log 2 while for p large we have
Kp ∼ p−12−p.

We now state our main result on submeasures with a lower estimate (see Section 1 for
the definitions).

Theorem 2.1. Let A be an algebra of subsets of Ω. Suppose that φ is a normalized

submeasure on A, which satisfies a lower p-estimate where 1 < p < ∞. Then there is

measure λ on A with 0 ≤ λ ≤ φ and λ(Ω) ≥ Kp.

Proof: By an elementary compactness argument we need only prove the result for the
case when Ω is finite and A = 2Ω. We fix such an Ω.

Let γ be the greatest constant such that, whenever φ is a normalized submeasure on
Ω satisfying a lower p-estimate then there is a measure λ with 0 ≤ λ ≤ φ and φ(Ω) ≥ γ.

It follows from a simple compactness argument that there is a normalized submeasure φ
satisfying a lower p-estimate for which this constant is attained; that is if λ is a measure
with 0 ≤ λ ≤ φ then λ(Ω) ≤ γ. We choose this φ and then pick an optimal measure λ with
0 ≤ λ ≤ φ and λ(Ω) = γ.

Let δ = (2p − 1)−1/p. Let E be a maximal subset of Ω such that λ(E) ≥ δφ(E) and
let F = Ω \ E. Suppose A ⊂ F ; then

λ(A) + λ(E) = λ(A ∪ E) ≤ δφ(A ∪ E) ≤ δ(φ(A) + φ(E)),

and so

(1) λ(A) ≤ δφ(A).

Let q be the conjugate index of p, i.e. p−1 + q−1 = 1. Let ν be any measure on A so
that 0 ≤ ν ≤ φ. Suppose c1, c2 ≥ 0 are such that cq1 + cq2 = 1. Consider the measure

µ(A) = c1λ(A ∩ E) + c2ν(A ∩ F ).

Then for any A

µ(A) ≤ (cq1 + cq2)1/q(λ(A ∩ E)p + ν(A ∩ F )p)1/p

≤ (φ(A ∩ E)p + φ(A ∩ F )p)1/p ≤ φ(A).

Hence µ(Ω) ≤ γ which translates as

c1λ(E) + c2ν(F ) ≤ γ.

Taking the supremum over all c1, c2, we have:

(2) λ(E)p + ν(F )p ≤ γp.
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Now take ν(A) = δ−1λ(A ∩ F ). It follows from (1) that ν ≤ φ and hence from (2),

λ(E)p + δ−pλ(F )p ≤ γp.

If we set t = λ(E)/γ then

tp + (2p − 1)(1− t)p ≤ 1

and it follows by calculus that t ≤ 1
2 . Hence λ(E) ≤ γ/2.

Now, consider the submeasure ψ(A) = φ(A ∩ F ). By hypothesis on γ there exists a
positive measure ν on Ω such that 0 ≤ ν ≤ ψ and ν(Ω) ≥ γψ(Ω). Thus for all A we have
0 ≤ ν(A) ≤ φ(A ∩ F ), ν(E) = 0 and ν(F ) = ν(Ω) ≥ γφ(F ). Returning to equation (2) we
have:

λ(E)p + γpφ(F )p ≤ γp.

However φ(F ) ≥ 1− φ(E) ≥ 1− δ−1λ(E). Thus, recalling that t = λ(E)/γ

tp + (1− δ−1γt)p ≤ 1,

which simplifies to

γ ≥ δ
(

1− (1− tp)1/p

t

)
.

Since t ≥ 1
2 it follows again by calculus arguments that the right-hand side is minimized

when t = 1
2 and then

γ ≥ 2δ
(

1− (1− 2−p)1/p
)

= Kp

and this completes the proof.

In almost the same manner, we can prove the dual statement for supermeasures.

Theorem 2.2. Let A be an algebra of subsets of a set Ω. Suppose 0 < p < 1 and that φ

is a normalized supermeasure on Ω which satisfies an upper p-estimate. Then there is a

φ-continuous measure λ on A such that λ ≥ φ, λ(Ω) ≤ Kp.

Proof: We first prove the existence of some measure λ with λ ≥ φ and λ(Ω) ≤ Kp

without requiring continuity. As in the preceding proof it will suffice to consider the case
when Ω is finite and A = 2Ω. In this case there is a least constant γ <∞ with the property
that if φ is a normalized supermeasure on Ω then there is a measure λ ≥ φ with λ(Ω) ≤ γ.
We again may choose an extremal φ and associated extremal λ for which λ(Ω) = γ.

Define δ = (2p − 1)−1/p > 1 we now let E be a maximal subset so that λ(E) ≤ δφ(E)
and defining F = Ω \ E we obtain in this case that if A ⊂ F then λ(A) ≥ φ(A).
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In this case let q be defined by 1
q = 1

p − 1. Let ν be any measure on A such that
ν(A) ≥ φ(A) whenever A ⊂ F. Suppose c1, c2 > 0 satisfy c−q1 + c−q2 = 1. Consider the
measure

µ(A) = c1λ(A ∩ E) + c2ν(A ∩ F ).

Then for any A,

φ(A) ≤ (φ(A ∩ E)p + φ(A ∩ F )p)1/p

≤ (λ(A ∩ E)p + ν(A ∩ F )p)1/p

≤ (c1λ(A ∩ E) + c2ν(A ∩ F ))(c−q1 + c−q2 )

= µ(A).

Hence µ(Ω) ≥ γ and so
c1λ(E) + c2ν(F ) ≥ γ.

Minimizing over c1, c2 yields

(3) λ(E)p + ν(F )p ≥ γp.

In particular if we let ν(A) = δ−1λ(A ∩ F ) and set t = λ(E)/γ we obtain

tp + (2p − 1)(1− t)p ≥ 1.

Since in this case p < 1 we are led to the conclusion that t ≥ 1
2 .

Next we consider the supermeasure ψ(A) = φ(A ∩ F ) and deduce the existence of a
measure ν ≥ ψ with ν(Ω) ≤ γψ(Ω) = γφ(F ). In this case (3) gives that

λ(E)p + γpφ(F )p ≥ γp.

Now as φ(F ) ≤ 1− φ(E) ≤ 1− δ−1λ(E) we have:

tp + (1− δ−1γt)p ≥ 1

and this again leads by simple calculus to the fact that γ ≤ Kp. This then completes the
proof if we do not require continuity of λ.

Now suppose φ is a normalized supermeasure on A satisfying an upper p-estimate.
Let λ be a minimal measure subject to the conditions λ ≥ φ and λ(Ω) ≤ Kp. (It follows
from an argument based on Zorn’s Lemma that such a minimal measure exists). Suppose
limn→∞ φ(Fn) = 0. Consider the measures λn(A) = λ(A ∩ En) where En = Ω \ Fn. Let
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U be any free ultrafilter on the natural numbers and define λU (A) = limU λn(A). Clearly
λU ≤ λ. Now for any A

λn(A) = λ(A ∩ En) ≥ φ(A ∩ En) ≥ (φ(A)p − φ(Fn))1/p.

Hence λU = λ by minimality. Thus limU λ(Fn) = 0 for every such ultrafilter and this
means limn→∞ λ(Fn) = 0.

The following corollary is proved for more general uniformly exhaustive submeasures
in [6].

Corollary 2.3. Let A be an algebra of subsets of Ω and let φ be a submeasure on Ω
such that for some constant c > 0 and some q <∞, we have:

φ(A1 ∪ · · · ∪An) ≥ c(φq(A1) + · · ·+ φq(An))1/q

whenever A1, . . . , An are disjoint. Then there is a measure µ on A such that µ and φ are

equivalent.

Proof: Define ψ by

ψ(A) = sup(
n∑
k=1

φq(Ak))

where the supremum is computed over all n and all disjoint (A1, . . . , An) so that A =
∪nk=1Ak. It is not difficult to show that ψ is a supermeasure satisfying 1/q−upper estimate
and clearly cqψ ≤ φq ≤ ψ. By Theorem 2.2 we can pick a measure µ ≥ ψ which is equivalent
to ψ and hence to φ.

3. Convexity in lattices.
Let Ω be a compact Hausdorff space and suppose B(Ω) denotes the σ−algebra of

Borel subsets of Ω. Let B(Ω) denote the space of all real-valued Borel functions on Ω. An
admissible extended-value quasinorm on B(Ω) is a map f → ‖f‖X , (B(Ω)→ [0,∞]) such
that:
(a) ‖f‖X ≤ ‖g‖X for all f, g ∈ B(Ω) with |f | ≤ |g| pointwise.
(b) ‖αf‖X = |α|‖f‖X for f ∈ B(Ω), α ∈ R
(c) There is a constant C so that if f, g ≥ 0 have disjoint supports then ‖f + g‖X ≤
C(‖f‖X + ‖g‖X).
(d) There exists a strictly positive u with 0 < ‖u‖X <∞.
(e) If fn ≥ 0 and fn ↑ f pointwise, then ‖fn‖X → ‖f‖X .
The space X = {f : ‖f‖X <∞} is then a quasi-Banach function space on Ω equipped with

7



the quasi-norm ‖f‖X (more precisely one identifies functions f, g such that ‖f −g‖X = 0).
We say that X is order-continuous if, in addition, we have:
(f) If fn ↓ 0 pointwise and ‖f1‖X <∞ then ‖fn‖X ↓ 0.

Conversely if X is a quasi-Banach lattice which contains no copy of c0 and has a weak
order-unit then standard representation theorems can be applied to represent X as an
order-continuous quasi-Banach function space on some compact Hausdorff space Ω in the
above sense. More precisely, if u is a weak order-unit then there is a compact Hausdorff
space Ω and a lattice embedding L : C(Ω)→ X so that L[0, χΩ] = [0, u]. Since X contains
no copy of c0 we can use a result of Thomas [16] to represent L is the form

Lf =
∫

Ω

fdΦ

where Φ is regular X-valued Borel measure on Ω. This formula then extends L to all
bounded Borel functions. We now define the quasi-Banach function space Y by

‖f‖Y = sup
n
‖L(min(|f |, nχΩ)‖X

and it may be verified by standard techniques that L extends to a lattice isomorphism of
Y onto X (which is an isometry if we assume that the quasi-norm on X is continuous).

For an arbitrary quasi-Banach function space X and 0 < p < ∞ we define the
p-convexity constant M (p)(X) to be the least constant (possibly infinite) such that for
f1, . . . , fn ∈ X

‖(
n∑
i=1

|fi|p)1/p‖X ≤M (p)(
n∑
i=1

‖fi‖pX)1/p

and we let the p-concavity constant M(p)(X) be the least constant such that

M(p)‖(
n∑
i=1

|fi|p)1/p‖X ≥ (
n∑
i=1

‖fi‖pX)1/p.

We also let M (0)(X) be the least constant such that

‖|f1 . . . fn|1/n‖X ≤M (0)(
n∏
i=1

‖fi‖X)1/n.

X is called p-convex if M (p)(X) <∞ and p-concave if Mp(X) <∞; we will say that
X is geometrically convex if M (0)(X) <∞. In [2] X is called L-convex if it is p-convex for
some p > 0; it is follows from [2] and [4] that X is L-convex if and only if it is geometrically
convex.
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Let us now turn to upper and lower estimates. We say X satisfies a crude upper
p-estimate with constant a if for any disjoint f1, . . . , fn we have

‖f1 + . . . fn‖X ≤ a(
n∑
i=1

‖fi‖pX)1/p

and we say that X satisfies an upper p-estimate if a = 1. We say that X satisfies a crude
lower q-estimate with constant b if for any disjoint f1, . . . , fn we have

b‖f1 + . . . fn‖X ≥ (
n∑
i=1

‖fi‖pX)1/p;

and X satisfies a lower q-estimate if b = 1.

Lemma 3.1. Suppose 0 < p < q < ∞. If X is a quasi-Banach function space satisfying a

crude upper p-estimate with constant a and a crude lower q-estimate with constant b then

there is an equivalent function space quasinorm ‖ ‖Y satisfying an upper p and a lower

q−estimate with

‖f‖X ≤ ‖f‖Y ≤ ab‖f‖X .

proof: First we define

‖f‖W = inf(
n∑
i=1

‖fχAk‖
p
X)1/p

where the infimum is taken over all possible Borel partitions {A1, . . . , An} of Ω. It is clear
that ‖f‖W ≤ ‖f‖X ≤ a‖f‖W and it can be verified that W satisfies an upper p-estimate
and a crude lower q-estimate with constant b. Next we define

‖f‖V = sup(
n∑
i=1

‖fχAk‖
q
W )1/q

and finally set ‖f‖Y = a‖f‖V . We omit the details.

We now give a simple proof of the result proved in [2] that any quasi-Banach function
space which satisfies a lower estimate is L-convex. We recall first that if µ is any Borel
measure on Ω then Lp,∞(µ) is the space of all Borel functions such that

‖f‖Lp,∞(µ) = sup
t>0

t(µ{|f | > t})1/p <∞.

Theorem 3.2. Let X be a p-normable quasi-Banach function space which satisfies a crude

lower q-estimate. Then:
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(i) X is r-convex for 0 < r < p

(ii) There is a measure µ on Ω such that ‖f‖X = 0 if and only if f = 0 µ−a.e.

proof: We may assume by Lemma 3.1 that X has an upper p-estimate and a lower q-
estimate. Now suppose f1, . . . , fn ∈ X+ and (

∑n
i=1 f

r
i )1/r = f. Consider the submeasure

φ(A) = ‖fχA‖pX for A ∈ B(Ω). This has a lower q/p−estimate and hence there is a Borel
measure µ with µ(Ω) ≥ Kq/pφ(Ω) and such that µ(A) ≤ ‖fχA‖p for any Borel set A. Thus
for any g ∈ B(Ω) (note that µ is supported on the set where f is finite)

‖gf−1‖Lp,∞(µ) ≤ ‖g‖X .

Now the space Lp,∞(µ) is r-convex with M (r)(Lp,∞(µ)) ≤ C = C(p, r). Thus

‖f‖X = φ(Ω)1/p ≤ K−1/p
q/p ‖χΩ‖Lp,∞(µ)

≤ CK−1/p
q/p (

n∑
i=1

‖fif−1‖rLp,∞(µ))
1/r

≤ C ′(
n∑
i=1

‖fi‖rX)1/r

where C ′ = C ′(p, q, r). For (ii) let u be a strictly positive function with 0 < ‖u‖X < ∞
and define φ(A) = ‖uχA‖p; then by Corollary 2.3 there is a measure µ equivalent to φ and
the conclusion follows quickly.

Now suppose µ is any (finite) Borel measure on Ω. We define the Lorentz space Lp,q
for 0 < p, q <∞ by

‖f‖Lp,q =
(∫ ∞

0

q

p
tq/p−1f∗(t)qdt

)1/q

.

Here f∗ is the decreasing rearrangement of |f | i.e. f∗(t) = infµ(E)≤t supω/∈E |f(ω)|. It can
easily seen by integration by parts that

‖f‖Lp,q =
(∫ ∞

0

qtq−1µ(|f | > t)q/pdt
)1/q

. It is then clear that if p ≤ q then Lp,q satisfies an upper p and a lower q-estimate. If
p > q then Lp,q has an upper q and a lower p−estimate.

Suppose p < q. We define the functional

(4) ‖f‖Λp,q = sup(
n∑
i=1

( inf
ω∈Ai

|f(ω)|)qµ(Ai)q/p)1/q

where the supremum is taken over all Borel partitions {A1, . . . , An} of Ω.
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Proposition 3.3. Suppose 0 < p < q. Then:

(i) The Λ(p, q)−quasi-norm is the smallest admissible quasi-norm which satisfies a lower

q-estimate and such that ‖χA‖ ≥ µ(A)1/p for any Borel set.

(ii) If f ∈ B(Ω) and f∗ is the decreasing rearrangement of |f | on [0,∞) then

(5) ‖f‖Λp,q = sup
T

(
n∑
j=1

f∗(τj)q(τj − τj−1)q/p)1/q

where T = {τ0 = 0 < τ1 < · · · < τn} runs through all possible finite subsets of R.
(iii) If f ∈ B(Ω) then

‖f‖Λp,q ≤ ‖f‖Lp,q ≤ ((1 + θ)2(1+θ)θ−θ)1/q‖f‖Λp,q

where 1 + θ = q
p .

Proof: (i) is clear from the definition.
(ii): Suppose f ∈ B(Ω) and let {A1, . . . , An} be any Borel partition of Ω. Suppose

that 1 ≤ j, k ≤ n. Suppose infAj |f | ≤ infAk |f |. Then it is easy to verify that if we let
A′k = {ω ∈ Aj ∪ Ak : |f(ω)| ≥ infAk |f |} and let A′j = (Aj ∪ Ak) \ A′k then the partition
obtained by replacing Aj , Ak by A′j , A

′
k increases the right-hand side of (4). In particular it

follows that (5) defines the Λp,q quasinorm when µ is nonatomic. Further if f∗ is constant
on an interval [α, β] it suffices to consider T where no τj lies in (α, β) and this yields the
conclusion for general µ.

(iii): The first inequality in (iii) is immediate from (i) since Lp,q satisfies a lower
q-estimate. For the right-hand inequality we observe that if h = 1 + θ = q/p:

‖f‖Lp,q = (
∫ ∞

0

q

p
tq/p−1(f∗(t))qdt)1/q

≤ (
∞∑

n=−∞

q

p
(hn+1 − hn)h(n+1)(q/p−1)f∗(hn)q)1/q

= (
∞∑

n=−∞
h(h− 1)hq/p−1hq(n+1)/pf∗(hn+1)q)1/q

≤ h
2
p (h− 1)( 1

q−
1
p )‖f‖Λp,q .

The result then follows.

Under the hypothesis p > q we define Λp,q by

‖f‖Λp,q = inf(
n∑
i=1

( sup
ω∈Ai

|f(ω)|q)µ(Ai)q/p)1/q

where the infimum is again computed over all Borel partitions of Ω. Proposition 3.4 now
has an analogue whose proof is very similar and we omit most of the details.
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Proposition 3.4. Suppose 0 < q < p. Then:

(i) The Λ(p, q)-quasinorm is the largest admissible quasi-norm which satisfies an upper

q-estimate and such that ‖χA‖ ≤ µ(A)1/p, for any Borel set A.

(ii) If f ∈ B(Ω) then

‖f‖Λp,q = inf
T

(
n∑
j=1

f∗(τj−1)q(τj − τj−1)q/p)1/q

where T = {τ0 = 0 < τ1 < · · · < τn = µ(Ω)} runs through all possible finite subsets of

[0, µ(Ω)].
(iii) If f ∈ B(Ω) then

‖f‖Lp,q ≥ ‖f‖Λp,q ≥ ((1 + θ)−2−θθθ)1/p‖f‖Lp,q

where θ = p
q − 1.

Proof: We will only proof the second inequality in (iii). We define h = 1 + θ = p/q.

‖f‖Lp,q = (
∫ ∞

0

q

p
tq/p−1f∗(t)qdt)1/q

≥ (
∞∑

n=−∞

q

p
(hn+1 − hn)hn(q/p−1)f∗(h(n+1))q)1/q

= (
∞∑

n=−∞
h−1(h− 1)h(n−1)q/pf∗(hn)q)1/q

≥ (h− 1)( 1
q−

1
p )h−1/p−1/q‖f‖Λp,q .

The result then follows.

We now immediately deduce the following:

Proposition 3.5. Let X be quasi-Banach function space on Ω satisfying a crude upper

p-estimate with constant a and a crude lower q-estimate with constant b. Then if f ∈ X+

with ‖f‖X = 1:

(i) There is a probability measure µ on Ω such that f > 0 µ−a.e. and if g ∈ X,

‖gf−1‖Λp,q(µ) ≤ abK
−1/p
q/p ‖g‖X .

(ii) There is a probability measure λ on Ω such that f > 0 λ−a.e. and if g ∈ X

‖g‖X ≤ abK1/q
p/q‖gf

−1‖Λq,p(λ).
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proof: We first introduce an equivalent quasinorm ‖ ‖Y with an exact upper p and lower
q-estimate as in Lemma 3.1 so that ‖g‖X ≤ ‖g‖Y ≤ ab‖g‖X for all g.

(i)As in Theorem 3.2 we consider the submeasure φ(A) = ‖fχA‖pY . There is a proba-
bility measure µ such that

0 ≤ µ ≤ K−1
q/p

φ(A)
φ(Ω)

for all Borel sets A. Then for g ∈ X, and any Borel partition {A1, . . . , An} of Ω,

(
n∑
i=1

(inf
Ai
|gf−1|q)µ(Ai)q/p)1/q ≤ K−1/p

q/p φ(Ω)−1/p(
n∑
i=1

(inf
Ai
|gf−1|q)‖fχA‖qY )1/q

≤ K−1/p
q/p ‖f‖

−1
Y ‖g‖Y

≤ K−1/p
q/p ab‖g‖X .

Thus (i) follows. The proof of (ii) is very similar. In this case we consider the supermeasure
φ(A) = ‖fχA‖qY . There is a probability measure λ on Ω such that

0 ≤ K−1
p/q

φ(A)
φ(Ω)

≤ λ

for all Borel sets A. Thus for g ∈ X, and any Borel partition {A1, . . . , An} of Ω,

‖g‖X ≤ ‖g‖Y

≤ (
n∑
i=1

(sup
Ai

|gf−1|p)‖fχAi‖
p
Y )1/p

≤ (
n∑
i=1

(sup
Ai

|gf−1|p)φ(Ai)p/q)1/p

≤ K1/q
p/q‖f‖Y (

n∑
i=1

(sup
Ai

|gf−1|p)λ(Ai)p/q)1/p

and the result follows.

Theorem 3.6. Suppose 0 < r < p <∞. Then there is a constant c = c(r, p) such that if

X is a quasi-Banach function space satisfying an upper p-estimate and a lower q−estimate

where q/p = 1 + θ < 2 then logM (r)(X) ≤ θ(c+ 1
p | log θ|).

Proof: We use Proposition 3.5. Suppose f1, . . . , fn are nonnegative functions in X with
‖f‖X = 1 where f = (

∑n
i=1 f

r
i )1/r. Then there is a probability measure µ on Ω with f > 0

a.e. and such that if g ∈ X
‖gf−1‖Λp,q ≤ K

−1/p
q/p ‖g‖X .
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Notice that K−1
q/p ≤ ec1θ for some c1. We also have q/p ≤ eθ and (q − r)/(p − r) ≤ c2θ

where c2 depends only on p, r. Let wi = fif
−1.

We note first that for any w ≥ 0 in B(Ω) we have∫
wrdµ =

∫ 1

0

w∗(t)rdt

≤ (
q

p
)−r/q‖w‖rLp,q (

∫ 1

0

t−
r(q−p)
p(q−r) dt)1−r/q

≤ p

q
(
q − r
p− r

)1−r/q‖w‖rLp,q

≤ ec3θ‖w‖rLp,q

where c3 = c3(r, p). Thus ∫
wrdµ ≤ θ−rθ/qec4θ‖w‖rΛp,q

where c4 = c4(r, p). Applying this to the wi and summing we have

1 ≤ θ−rθ/pec5θ
n∑
i=1

‖fi‖rX ,

with c5 depending only on r, p. The result now follows.

Example: We show that the estimate in the previous theorem is essentially best possible.
For convenience we consider the case p = 1 and q = 1 + θ. The conclusion of the theorem
is that, for 0 < r < p, M (r)(X) ≤ exp(Fr(θ)) where

lim
θ→0

Fr(θ)
θ| log θ|

= 1.

Since M (0)(X) ≤M (r)(X) for all r > 0 a similar conclusion is attained in the case r = 0.
We establish a converse by considering only the case r = 0.

For θ > 0 we let X = Xθ = Λ1,q[0, 1] and we let κ(θ) = M (0)(X). We will set
φ(θ) = exp(−| log θ|1/2) so that limθ→0 φ(θ) = 0. We further set ψ(θ) = (21/q − 1)−2; then
ψ(θ) = 1 + 4θ log 2 +O(θ2).

We will consider the function f = fθ ∈ X defined by f(t) = t−1χ[1−φ,1]. It follows
easily from the definition of M (0)(X) that

exp(− 1
φ

∫ 1

1−φ
log t dt)‖χ[1−φ,1]‖X ≤ κ‖f‖X .

To obtain this one derives the integral version of geometric convexity and applies it to
suitable rotations of f . Thus if β(θ) = 1 + (1− φ)φ−1 log(1− φ) then

eβφ ≤ κ‖f‖X .
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Turning to the estimation of ‖f‖X we note that ‖f‖qX is the supremum of expressions
of the form

n∑
j=1

(τj − τj−1)qτ−qj

where 1 − φ = τ0 < τ1 < · · · < τn = 1. Now if τj > ψτj−1 it can be checked that this
expression is increased by interpolating (τjτj−1)1/2 into the partition. We there fore may
suppose that we consider only partitions where τj ≤ ψτj−1. In this case we estimate:

(τj − τj−1)qτ−qj ≤ (τj − τj−1)(τj − τj−1)θτ−1+θ
j−1

≤ (ψ − 1)θ(τj − τj−1)τ−1
j−1

and after summing we get the estimate

‖f‖qX ≤ (ψ − 1)θ| log(1− φ)|.

Thus

κ ≥ eβφ(ψ − 1)−θ/q| log(1− φ)|−1/q.

Now for small θ we can estimate | log(1− φ)| ≤ (1 + φ)φ. Thus

κq ≥ eqβφθ(ψ − 1)−θ(1 + φ)−1

so that

lim inf
θ→0

log κ
θ| log θ|

≥ lim inf
θ→0

(log φ− log(ψ − 1))
| log θ|

≥ 1.

Thus we conclude from this calculation and the theorem that

log κ(θ) = −θ log θ + o(θ| log θ|)

as θ → 0.

4. The factorization theorems of Pisier.
We next show how the results of Proposition 3 quickly give extensions of some factor-

ization theorems due to Pisier [13]. Our approach is valid for quasi-Banach spaces since it
does not depend on any duality.

Theorem 4.1. Suppose 0 < r ≤ p < q < ∞. Suppose Ω is a compact Hausdorff space

and that Y is an r-Banach space. Suppose T : C(Ω) → Y is a bounded linear operator.
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Then the following conditions on T are equivalent:

(i) There is a constant C1 so that for any f1, . . . , fn in C(Ω) with disjoint support we have

(
n∑
i=1

‖Tfi‖q)1/q ≤ C1 max
1≤i≤n

‖fi‖.

(ii) There is a constant C2 so that for any f1, . . . , fn we have

(
n∑
i=1

‖Tfi‖q)1/q ≤ C2‖(
n∑
i=1

|fi|p)1/p‖.

(iii) There is a constant C3 and a probability measure µ on Ω such that for all f ∈ C(Ω),

‖Tf‖ ≤ C3‖f‖1−p/q(
∫
|f |pdµ)1/q

(iv) There is a constant C4 and a probability measure µ on Ω such that for all f ∈ C(Ω),

‖Tf‖ ≤ C4‖f‖Lq,r(µ).

proof: Some implications are essentially trivial. Thus (iv)⇒ (iii) and (ii)⇒ (i); (iii)⇒
(ii) is easy and we omit it. It remains to show (i)⇒ (iv).

To do this we first notice that if fn is a sequence of disjointly supported functions in
C(Ω) then Tfn → 0. Thus the theorem of Thomas [16] already cited allows us to find a
regular Y -valued Borel measure Φ on Ω so that

Tf =
∫
fdΦ

and use this formula to extend T to the bounded Borel functions B∞(Ω). It is easy to
verify the condition (i) remains in effect for disjointly supported bounded Borel functions.

Now we introduce a quasi-Banach function space Z by defining

‖f‖Z = sup

(
n∑
i=1

‖Tg‖q
)1/q

,

where the supremum is over disjoint gi ∈ B∞(Ω) with |gi| ≤ |f |. It is immediate that ‖ ‖Z
satisfies an upper r-estimate and a lower q-estimate. Also, we see that χΩ ∈ Z. Thus by
Proposition 3.5 we can find a probability measure µ on Ω so that for some C,C4

‖g‖Z ≤ C‖g‖Λq,r(µ) ≤ C4‖g‖Lq,r(µ).

We now prove the companion factorization result for operators on Lp-spaces.
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Theorem 4.2. Suppose 0 < r ≤ q < s < ∞. Let (Ω, µ) be a σ-finite measure space. Let

Y be an r-Banach space, and let T : Ls(µ) → Y be a bounded linear operator. Then the

following conditions are equivalent:

(i) There is a constant C1 so that for any disjoint f1, . . . , fn in Ls(µ) we have:

(
n∑
i=1

‖Tfi‖q)1/q ≤ C1‖
n∑
i=1

|fi|‖Ls(µ).

(ii) There is a constant C2 and a probability measure λ on Ω so that for any f ∈ Ls(µ)
and any Borel set E we have

‖T (fχE)‖ ≤ C2‖f‖Ls(µ)λ(E)1/q−1/s

(iii) There is a constant C3 and a probability measure λ on Ω so that for any f ∈ Ls(µ)
and g ∈ B(Ω) with |g| ≤ 1,

‖T (fg)‖ ≤ C3‖f‖Ls(µ)‖g‖Lt,r(λ)

where 1/t = 1/q − 1/s.
(iv) There exists w ∈ L1(µ) with w ≥ 0 and

∫
w dµ = 1 and a constant C4 such that for

all f ∈ Ls(µ)
‖Tf‖ ≤ C4‖fw−1/s‖Lq,r(wµ).

proof: We omit the simple proof that (ii) ⇒ (i). Also (iii) ⇒ (ii) and (iv) ⇒ (ii) are
obvious.

We first consider (i) ⇒ (iii). For this direction we define a quasi-Banach function
space Z by

‖g‖Z = sup

(
n∑
i=1

‖T (fig)‖q
)1/q

,

where the supremum is over disjoint fi ∈ Ls(µ) with ‖
∑n
i=1 |fi|‖s ≤ 1 and fig ∈ Ls(µ). It

is clear that Z satisfies an upper r-estimate. We show that Z satisfies a lower t-estimate,
where 1/t = 1/q − 1/s. Let us suppose that we have disjoint g1, . . . , gm ∈ Z such that

m∑
k=1

‖gk‖tZ > 1,

and let g = g1 + . . . gm. Then there are fik such that

m∑
k=1

(
n∑
i=1

‖T (fikgk)‖q
)t/q

= 1
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and

‖
n∑
i=1

fik‖s ≤ 1.

We let

αk =

(
n∑
i=1

‖T (fikgk)‖q
)t/qs

and f ′ik = αkfik. Then we have that

m∑
k=1

n∑
i=1

‖T (f ′ikg)‖q ≥ 1,

and

‖
m∑
k=1

n∑
i=1

f ′ik‖ss ≤
m∑
k=1

αsk ≤ 1,

that is, ‖g‖Z ≥ 1.
We also notice that χΩ ∈ Z. Thus by Propositions 3.4 and 3.5, there is a probability

measure λ so that for some C3 and all bounded g

‖g‖Z ≤ C3‖g‖Lt,r(λ).

Now we show that (ii) ⇒ (iv). We notice that λ is µ−continuous, and so by the
Radon-Nikodym theorem, we can find w = dλ/dµ. Then for any measurable set A we
have:

‖T (χAw1/s‖ ≤ C2‖χAw1/s‖Ls(µ)λ(A)1/q−1/s = C2λ(A)1/q.

Now define a function space W by

‖f‖W = sup
|g|≤|f |,g∈B∞

‖T (gw1/s)‖.

Then W has an upper r-estimate and

‖χA‖W ≤ C2λ(A)1/q.

Hence by Proposition 3.4
‖f‖W ≤ C4‖f‖Lq,r(λ)

for some C4.

To conclude the paper let us observe that Theorem 4.1 can be used to extend other
factorization results to non-locally convex spaces. Let us first recall that an operator
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T : X → Y where X is a Banach space and Y is a quasi-Banach space is called 2-absolutely
summing if there is a constant C so that for x1, . . . , xn ∈ X we have

(
n∑
i=1

‖Txi‖2)1/2 ≤ C max
‖x∗‖≤1

(
n∑
i=1

|x∗(xi)|2)1/2.

A quasi-Banach space X is of cotype p if there is a constant C so that if x1, . . . , xn ∈ X
then

Ave εi=±1‖
n∑
i=1

εixi‖ ≤ C(
n∑
i=1

‖xi‖p)1/p.

For the following theorem for Banach spaces see [12], p. 62.

Theorem 4.3. Suppose Ω is a compact Hausdorff space and Y is a quasi-Banach space

with cotype two. Suppose T : C(Ω) → Y is a bounded operator. Then T is 2-absolutely

summing and hence there is a probability measure µ on Ω and a constant C so that

‖Tf‖ ≤ C‖f‖L2(µ) for f ∈ C(Ω).

Proof: We may assume that X is an r-Banach space where 0 < r < 1. We first note that
if f1, . . . , fn ∈ X then since X has cotype two,

(
n∑
i=1

‖Tfi‖2)1/2 ≤ C1Aveεi=±1‖
n∑
i=1

εiTfi‖

≤ C1‖T‖Aveεi=±1‖
n∑
i=1

εifi‖

≤ C1‖T‖‖
n∑
i=1

|fi|‖

where C1 depends on the cotype two constant of X. Applying Theorem 4.1, we see that
there is a probability measure ν on Ω and a constant C2 so that ‖Tf‖ ≤ C2‖f‖L2,r(ν) for
f ∈ C(Ω). In particular it follows that ‖Tf‖ ≤ C3‖f‖L4(ν). From this we conclude that if
f1, . . . , fn ∈ C(Ω), using Khintchine’s inequality,

(
n∑
i=1

‖Tfi‖2)1/2 ≤ C1Aveεi=±1‖
n∑
i=1

εiTfi‖

≤ C4Aveεi=±1‖
n∑
i=1

εifi‖L4(ν)

≤ C5‖(
n∑
i=1

|fi|2)1/2‖L4(ν)

≤ C5‖(
n∑
i=1

|fi|2)1/2‖C(Ω)

19



so that T is 2-absolutely summing. It now follows from the Grothendieck-Pietsch Fac-
torization Theorem (which applies to non-locally convex X) that there is a probability
measure µ on Ω satisfying the conclusions of the Theorem.

Remarks: We conclude with some comments on Theorem 4.3. We remark first that the
theorem, taking X = L1, gives a circuitous proof of Grothendieck’s inequality, which is
equivalent to the assertion that every operator from C(Ω) to L1 is 2-absolutely summing.

We also note that there are, by now, many known non-locally convex spaces of cotype
two. The most natural examples are the spaces Lp when 0 < p < 1; in this case, Theorem
4.3 is known, and is a consequence of work of Maurey [8] (see [17], p. 271). However, more
recently Pisier [14] has shown that the spaces Lp/Hp have cotype two when p < 1 and it
follows from work of Xu [18] that the Schatten ideals Sp have cotype two when p < 1, and
for such examples Theorem 4.3 is apparently new.

We conclude by noting a dual result and then make a conjecture based on these
observations. First let us recall that if X is a quasi-Banach space then its dual X∗ defined
in the usual way is a Banach space; here X∗ need not separate the points of X and may
indeed reduce to zero. We define the canonical map (not necessarily injective) j : X → X∗∗.

The Banach envelope of X is the closure X̂ of j(X).
We shall say that an operator T : X → Y is strongly approximable if T is in the

smallest subspace A of L(X,Y ) containing the finite-rank operators and closed under the
pointwise convergence of uniformly bounded nets.

The following theorem is essentially known.

Theorem 4.4. Suppose (Ω, µ) is a σ−finite measure space. LetX be a quasi-Banach space

such that X∗ has cotype q <∞. Then, for 0 < p < 1, there is a constant C = C(p,X) so

that if T : X → Lp(µ) is a strongly approximable operator then there exists w ≥ 0 with∫
wsdµ ≤ C, where 1/s = 1/p− 1, and such that ‖w−1Tx‖L1(µ) ≤ C‖T‖‖x‖ for x ∈ X.

Remark: If X is a Banach space, then this theorem is due to Mezrag [9] [10] with no
approximability assumptions on T. If X is not locally convex this result is essentially proved
in [3] and we here show how to obtain the actual statement from the equivalent Theorem
2.2 of [3]. Note also that for spaces X with trivial dual, the theorem holds vacuously since
the only strongly approximable operators are identically zero.

Proof: It is shown in Theorem 2.2 of [3] that given ε > 0 there exists C0(ε) so that, for
any probability measure ν, if T : X → Lp(ν) is strongly approximable then there exists
a Borel subset E of Ω so that ν(E) > 1 − ε and

∫
E
|Tx| dµ ≤ C0‖T‖‖x‖ for x ∈ X. Let

us fix ε = 1/2 and let C0 = C0(1/2). Suppose x1, . . . , xn ∈ X and let f =
∑n
i=1 |Txi|.

If ‖f‖p > 0, define ν = ‖f‖−pp |f |pµ. Consider the operator S : X → Lp(ν) defined by
Sx = |f |−1Tx (set Sx(ω) = 0 when f(ω) = 0.) Then ‖S‖ ≤ ‖f‖−1

p ‖T‖. Thus there is a
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Borel subset E of Ω with ν(E) > 1/2 and so that
∫
E
|Sx| dν ≤ C0‖f‖−1

p ‖T‖‖x‖ for x ∈ X.
Now

1
2
≤ ν(E) =

∫
E

n∑
i=1

|Sxi| dν

≤ C0‖f‖−1
p ‖T‖

n∑
i=1

‖xi‖.

and so we obtain an inequality

(
∫

(
n∑
i=1

|Txi|)pdµ)1/p ≤ 2C0‖T‖
n∑
i=1

‖xi‖,

where C1 depends only on p,X. Now by the factorization results of Maurey [8] (see [17] p.
264) we obtain the desired conclusion.

Theorem 4.5. Let X be a quasi-Banach space such that X∗ has cotype two. Suppose Ω
is a compact Hausdorff space and µ is a σ-finite measure on Ω. Then for 0 < p < 1, there

is a constant C = C(p,X) so that if T : X → Lp(µ) is a strongly approximable bounded

operator, then there exists v ≥ 0, with
∫
vtdµ ≤ C where 1/t = 1/p− 1/2, and such that

‖v−1Tx‖L2(µ) ≤ C‖T‖‖x‖ for x ∈ X.

Proof: By Theorem 4.4 we can find w ≥ 0 with
∫
wsdµ ≤ C0 such that ‖w−1Tx‖L1 ≤

C0‖T‖‖x‖. Now since L1 is a Banach space we have ‖wTx‖L1 ≤ C0‖T‖‖x‖X̂ so that
wT = Sj where S : X̂ → L1 is bounded with ‖S‖ ≤ C0‖T‖. Since X̂∗ = X∗ has
cotype two and L1 has cotype two we can factor S through a Hilbert space [11] and then
apply Maurey’s factorization results to obtain u ≥ 0 with

∫
u2dµ ≤ C1 and such that

‖u−1Sx‖L2 ≤ C1‖T‖‖x‖ for x ∈ X. Letting v = uw completes the proof.

Remarks: We discuss a question motivated by Theorems 4.3 and 4.5. An operator T :
X → Y is called approximable if given any compact set K ⊂ X and any ε > 0 there
exists a finite-rank operator F : X → F with ‖Tx− Fx‖ < ε for x ∈ K. Pisier has shown
that if X,Y are Banach spaces such that X∗ and Y have cotype two and T : X → Y is
an approximable linear operator then T factorizes through a Hilbert space (see [11], [12]).
Does the same result hold if we assume X,Y are quasi-Banach spaces? Theorems 4.3 and
4.5 provide some evidence that this perhaps is true.
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Paris VI/VII, 1991.

6. N.J. Kalton and J.W. Roberts, Uniformly exhaustive submeasures and nearly additive
set functions, Trans. Amer. Math. Soc. 278 (1983) 803-816.

7. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, II, Function spaces Springer
Verlag, Berlin 1979.
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