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Abstract. In this paper the theory of evolution semigroups is developed and used to provide a
framework to study the stability of general linear control systems. These include autonomous and
nonautonomous systems modeled with unbounded state-space operators acting on Banach spaces.
This approach allows one to apply the classical theory of strongly continuous semigroups to time-
varying systems. In particular, the complex stability radius may be expressed explicitly in terms
of the generator of a (evolution) semigroup. Examples are given to show that classical formulas for
the stability radius of an autonomous Hilbert-space system fail in more general settings. Upper and
lower bounds on the stability radius are proven for Banach-space systems. In addition, it is shown
that the theory of evolution semigroups allows for a straightforward operator-theoretic analysis of
internal stability as determined by classical frequency-domain and input-output operators, even
for nonautonomous Banach-space systems. In particular, for the nonautonomous setting, internal
stability is shown to be equivalent to input-output stability, for stabilizable and detectable systems.
For the autonomous setting, an explicit formula for the norm of input-output operator is given.
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0. Introduction. Presented here is a study of stability of infinite-dimensional
linear control systems which is based on the relatively recent development of the
theory of evolution semigroups. These semigroups have been used in the study of
exponential dichotomy of time-varying differential equations and more general hy-
perbolic dynamical systems; see [6, 22, 23, 26, 29, 34, 42] and the bibliographies
therein. The intent of this paper is to show how the theory of evolution semigroups
can be used to provide a clarifying perspective, and prove new results, on the uniform
exponential stability for general linear control systems, ẋ(t) = A(t)x(t) + B(t)u(t),
y(t) = C(t)x(t), t ≥ 0. The operators A(t) are generally unbounded operators on a
Banach space, X, while the operators B(t) and C(t) may act on Banach spaces, U
and Y , respectively. In addressing the general settings, difficulties arise both from the
time-varying aspect and from a loss of Hilbert-space properties. This presentation,
however, provides some relatively simple operator-theoretic arguments for properties
that extend classical theorems of autonomous systems in finite dimensions. The topics
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covered here include characterizing internal stability of the nominal system in terms
of appropriate input-state-output operators and, subsequently, using these properties
to obtain new explicit formulas for bounds on the stability radius. Nonautonomous
systems are generally considered, but some results apply only to autonomous ones,
such as the upper bound for the stability radius (Section 3.3), the formula for the norm
of the input-output operator in Banach spaces (Section 3.4) and a characterization of
stability that is related to this formula (Section 4.2).

Although practical considerations usually dictate that U and Y are Hilbert spaces
(indeed, finite dimensional), the Banach-space setting addressed here may be moti-
vated by the problem of determining optimal sensor (or actuator) location. For this,
it may be natural to consider U = X and B = IX (or Y = X and C = IX) [4]; if the
natural state space X is a Banach space then, as will be shown in this paper, Hilbert-
space characterizations of internal stability or its robustness do not apply. We also
show that even in the case of Hilbert spaces U and Y , known formulas for the stability
radius involving the spaces L2(R+, U) and L2(R+, Y ) do not apply if the L2 norm is
replaced by, say, the L1 norm—see the examples in Subsection 3.5 below. In addition
to the general setting of nonautonomous systems on Banach spaces, autonomous and
Hilbert-space systems are considered.

For the autonomous case, the primary observation we make about general Banach-
space settings versus the classical L2 and Hilbert-space setting can be explained using
the notion of Lp–Fourier multipliers. For this, let H(s) = C(A−is)−1B, s ∈ R, denote
the transfer function and F denote the Fourier transform. The transfer function H is
said to be an Lp–Fourier multiplier if the operator u 7→ F−1H(·)Fu can be extended
from the Schwartz class of rapidly decaying U–valued functions to a bounded operator
from Lp(R;U) to Lp(R;Y ); see, e.g., [1] for the definitions. As shown in Theorem 3.11
below, the norm of this operator is equal to the norm of the input-output operator. If
U and Y are Hilbert spaces and p = 2, then H is an L2–Fourier multiplier if and only
if ‖H(·)‖ is bounded on R; see formula (3.20). For Banach spaces and/or p 6= 2 this
latter condition is necessary, but not sufficient for H to be an Lp–Fourier multiplier.
As a result, our formula (3.18) for the norm of the input-output operator is more
involved.

To motivate the methods, recall Lyapunov’s stability theorem which says that if A
is a bounded linear operator on X and if the spectrum of A is contained in the open left
half of the complex plane, then the solution of the autonomous differential equation
ẋ(t) = Ax(t) onX is uniformly exponentially stable; equivalently, the spectrum σ(etA)
is contained in the open unit disk {z ∈ C : |z| < 1}, for t > 0. This is a consequence of
the fact that when A is a bounded operator, then the spectral mapping theorem holds:
σ(etA) \ {0} = etσ(A), t 6= 0. Difficulties with Lyapunov’s Theorem arise when the
operators, A, are allowed to be unbounded. In particular, it is well known that there
exist strongly continuous semigroups {etA}t≥0 that are not uniformly exponentially
stable even though Reλ ≤ ω < 0 for all λ ∈ σ(A); see, e.g., [27, 29, 41]. For
nonautonomous equations the situation is worse. Indeed, even for finite-dimensional
X it is possible for the spectra of A(t) to be the same for all t > 0 and contained
in the open left half-plane yet the corresponding solutions to ẋ(t) = A(t)x(t) are
not uniformly exponentially stable (see [14, Exm.7.1] for a classical example). In the
development that follows we plan to show how these difficulties can be overcome by
the construction of an “evolution semigroup.” This is a family of operators defined on
a superspace of functions from R into X, such as Lp(R, X), 1 ≤ p <∞, or C0(R, X).

Section 1 sets up the notation and provides background information. Section 2
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presents the basic properties of the evolution semigroups. Included here is the prop-
erty that the spectral mapping theorem always holds for these semigroups when they
are defined on X-valued functions on the half-line, such as Lp(R+, X). A consequence
of this is a characterization of exponential stability for nonautonomous systems in
terms of the invertibility of the generator Γ of the evolution semigroup. This oper-
ator, and its role in determining exponential stability, is the basis for many of the
subsequent developments. In particular, the semigroup {etA}t≥0 is uniformly expo-
nentially stable provided Re λ < 0 for all λ ∈ σ(Γ).

Section 3 addresses the topic of the (complex) stability radius; that is, the size of
the smallest disturbance, ∆(·), under which the perturbation, ẋ(t) = (A(t)+∆(t))x(t),
of an exponentially stable system, ẋ(t) = A(t)x(t), looses exponential stability. Re-
sults address structured and unstructured perturbations of autonomous and nonau-
tonomous systems in both Banach and Hilbert space settings. Examples are given
which highlight some important differences between these settings. Also included in
this section is a discussion about the transfer function for infinite-dimensional time-
varying systems. This concept arises naturally in the context of evolution semigroups.

In Section 4 the explicit relationship between internal and external stability is
studied for general linear systems. This material expands on the ideas begun in [37].
A classical result for autonomous systems in Hilbert space is the fact that exponential
stability of the nominal system (internal stability) is, under the hypotheses of sta-
bilizability and detectability, equivalent to the boundedness of the transfer function
in the right half-plane (external stability). Such a result does not apply to nonau-
tonomous systems and a counterexample shows that this property fails to hold for
Banach space systems. Properties from Section 2 provide a natural Banach-space
extension of this result: the role of transfer function is replaced by the input-output
operator. Moreover, for autonomous systems we provide an explicit formula relating
the norm of this input-output operator to that of the transfer function. Finally, we
prove two theorems—one for nonautonomous and one for autonomous systems—which
characterize internal stability in terms of the various input-state-output operators.

This Introduction concludes with a brief synopsis of the main results. The char-
acterization of uniform exponential stability in terms of an evolution semigroup and
its generator is given in Theorem 2.2, Theorem 2.5, and Corollary 2.6. Although these
results are essentially known, the proofs are approached in a new way. In particular,
Theorem 2.5 identifies the operator G = −Γ−1 used to determine stability throughout
the paper. Theorem 3.2 records the main observation that the input-output opera-
tor, L = CGB, for a general nonautonomous system is related to the inverse of the
generator of the evolution semigroup. A very short proof of the known fact that the
stability radius for such a system is bounded from below by ‖L‖−1 is also provided
here. The upper bound for the stability radius, being given in terms of the transfer
function, applies only to autonomous systems and is proven in Subsection 3.3. The
upper bound, as identified here for Banach spaces, seems to be new although our proof
is based on the idea of the Hilbert-space result of [17, Thm. 3.5]. In Subsection 3.3
we also introduce the pointwise stability radius and dichotomy radius. Estimates
for the former are provided by Theorems 3.3 and 3.4 while the latter is addressed
in Lemma 3.5. Examples 3.13 and 3.15 show that, for autonomous Banach space
systems, both inequalities for the upper and lower bounds on the stability radius
(see Theorem 3.1) can be strict. In view of the possibility of the strict inequality
‖L‖ > sups∈R ‖C(A − is)−1B‖, Theorem 3.11 provides a new Banach space formula
for ‖L‖ in terms of A, B, and C. In Section 4 this expression for ‖L‖ is used to relate



4 S. CLARK, Y. LATUSHKIN, S. MONTGOMERY-SMITH, AND T. RANDOLPH

state-space versus frequency-domain stability—concepts which are not equivalent for
Banach-space systems. A special case of this expression gives a new formula for the
growth bound of a semigroup on a Banach space; see Theorem 4.4 and the subsequent
paragraph. Finally, Theorem 4.3 extends a classical characterization of stability for
stabilizable and detectable control systems as it applies to nonautonomous Banach-
space settings.

1. Notation and Preliminaries. Throughout the paper, L(X,Y ) will denote
the set of bounded linear operators between complex Banach spaces X and Y . If A is
a linear operator on X, σ(A) will denote the spectrum of A, ρ(A) the resolvent set of A
relative to L(X) = L(X,X), and ‖A‖• = ‖A‖•,X := inf{‖Ax‖ : x ∈ Dom(A), ‖x‖ =
1}. In particular, if A is invertible in L(X), ‖A‖• = 1/‖A−1‖L(X). Also, let C+ =
{λ ∈ C : Re λ > 0}.

If A generates a strongly continuous (or C0) semigroup {etA}t≥0 on a Banach
space X the following notation will be used: s(A) = sup{Reλ : λ ∈ σ(A)} denotes the
spectral bound; s0(A) = inf{ω ∈ R : {λ : Re λ > ω} ⊂ ρ(A) and supRe λ>ω ‖(A−
λ)−1‖ < ∞} is the abscissa of uniform boundedness of the resolvent; and ω0(etA) =
inf{ω ∈ R : ‖etA‖ ≤ Metω for some M ≥ 0 and all t ≥ 0} denotes the growth
bound of the semigroup. In general, s(A) ≤ s0(A) ≤ ω0(etA) (see, e.g., [29]) with
strict inequalities possible; see [27, 29, 41] for examples. However, when X is a
Hilbert space, the following spectral mapping theorem of L. Gearhart holds (see, e.g.,
[27, p. 95] or [29, 33]):

Theorem 1.1. If A generates a strongly continuous semigroup {etA}t≥0 on a
Hilbert space, then s0(A) = ω0(etA). Moreover, 1 ∈ ρ(e2πA) if and only if iZ ⊂ ρ(A)
and supk∈Z ‖(A− ik)−1‖ <∞.
In particular, this result shows that on a Hilbert space X the semigroup {etA}t≥0 is
uniformly exponentially stable if and only if supλ∈C+

‖(A− λ)−1‖ <∞ [18].
Now consider operators A(t), t ≥ 0, with domain Dom(A(t)) in a Banach space

X. If the abstract Cauchy problem

ẋ(t) = A(t)x(t), x(τ) ∈ Dom(A(τ)), t ≥ τ ≥ 0,(1.1)

is well-posed in the sense that there exists an evolution (solving) family of opera-
tors U = {U(t, τ)}t≥τ on X which gives a differentiable solution, then x(·) : t 7→
U(t, τ)x(τ), t ≥ τ in R, is differentiable, x(t) is in Dom(A(t)) for t ≥ 0, and (1.1)
holds. The precise meaning of the term evolution family used here is as follows.

Definition 1.2. A family of bounded operators {U(t, τ)}t≥τ on X is called an
evolution family if

(i) U(t, τ) = U(t, s)U(s, τ) and U(t, t) = I for all t ≥ s ≥ τ ;
(ii) for each x ∈ X the function (t, τ) 7→ U(t, τ)x is continuous for t ≥ τ .

An evolution family {U(t, τ)}t≥τ is called exponentially bounded if, in addition,
(iii) there exist constants M ≥ 1, ω ∈ R such that

‖U(t, τ)‖ ≤Meω(t−τ), t ≥ τ.

Remarks 1.3.

(a) An evolution family {U(t, τ)}t≥τ is called uniformly exponentially stable if
in part (iii), ω can be taken to be strictly less than zero.

(b) Evolution families appear as solutions for abstract Cauchy problems (1.1).
Since the definition requires that (t, τ) 7→ U(t, τ) is merely strongly continuous
the operators A(t) in (1.1) can be unbounded.
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(c) In the autonomous case where A(t) ≡ A is the infinitesimal generator of a
strongly continuous semigroup {etA}t≥0 on X then U(t, τ) = e(t−τ)A, for
t ≥ τ , is a strongly continuous exponentially bounded evolution family.

(d) The existence of a differentiable solution to (1.1) plays little role in this paper,
so the starting point will usually not be the equation (1.1), but rather the
existence of an exponentially bounded evolution family.

In the next section we will define the evolution semigroup relevant to our interests
for the nonautonomous Cauchy problem (1.1) on the half-line, R+ = [0,∞). For now,
we begin by considering the autonomous equation ẋ(t) = Ax(t), t ∈ R, where A is
the generator of a strongly continuous semigroup {etA}t≥0 on X. If FR is a space of
X-valued functions, f : R→ X, define

(Et
R
f)(τ) = etAf(τ − t), for f ∈ FR.(1.2)

If FR = Lp(R, X), 1 ≤ p < ∞, or FR = C0(R, X), the space of continuous functions
vanishing at infinities (or another Banach function space as in [34]) this defines a
strongly continuous semigroup of operators {Et

R
}t≥0 whose generator will be denoted

by ΓR. In the case FR = Lp(R, X), ΓR is the closure (in Lp(R, X)) of the operator
−d/dt+A where (Af)(t) = Af(t) and

Dom(−d/dt + A) = Dom(−d/dt) ∩Dom(A)
= {v ∈ Lp(R, X) : v ∈ AC(R, X), v′ ∈ Lp(R, X),

v(s) ∈ Dom(A) for almost every s, and −v′ +Av ∈ Lp(R, X)}.

The important properties of this “evolution semigroup” are summarized in the fol-
lowing remarks; see [22] and also further developments in [29, 34, 42]. The unit circle
in C is denoted here by T = {z ∈ C : |z| = 1}.

Remarks 1.4. The spectrum σ(Et
R
), for t > 0, is invariant with respect to

rotations centered at the origin, and σ(ΓR) is invariant with respect to translations
along iR. Moreover, the following are equivalent.

(i) σ(etA) ∩ T = ∅ on X;
(ii) σ(Et

R
) ∩ T = ∅ on FR;

(iii) 0 ∈ ρ(ΓR) on FR.
As a consequence,

σ(Et
R
) \ {0} = etσ(ΓR), t > 0.(1.3)

Note that {Et
R
}t≥0 has the spectral mapping property (1.3) on FR even if the under-

lying semigroup {etA}t≥0 does not have the spectral mapping property on X. In the
latter case, it may be that the exponential stability of the solutions to ẋ = Ax on R
are not determined by the spectrum of A. However, such stability is determined by
the spectrum of ΓR. This is made explicit by the following corollary of Remarks 1.4:
The spectral bound s(ΓR) and the growth bound ω0(Et

R
) for the evolution semigroup

coincide and are equal to the growth bound of {etA}t≥0 :

s(ΓR) = ω0(Et
R
) = ω0(etA).

One of the difficulties related to nonautonomous problems is that their associ-
ated evolution families are two-parameter families of operators. From this point of
view, it would be of interest to define a one-parameter semigroup that is associated
to the solutions of the nonautonomous Cauchy problem (1.1). For such a semigroup
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to be useful, its properties should be closely connected to the asymptotic behavior of
the original nonautonomous problem. Ideally, this semigroup would have a generator
that plays the same significant role in determining the stability of the solutions as
the operator A played in Lyapunov’s classical stability theorem for finite-dimensional
autonomous systems, ẋ = Ax. This can, in fact, be done and the operator of in-
terest is the generator of the following evolution semigroup that is induced by the
two-parameter evolution family: if U = {U(t, τ)}t≥τ is an evolution family, define
operators Et

R
, t ≥ 0, on FR = Lp(R, X) or FR = C0(R, X) by

(Et
R
f)(τ) = U(τ, τ − t)f(τ − t), τ ∈ R, t ≥ 0.(1.4)

When U exponentially bounded, this defines a strongly continuous evolution semi-
group on FR whose generator will be denoted by ΓR. As shown in [22] and [34] the
spectral mapping theorem (1.3) holds for this semigroup. Moreover, the existence of
an exponential dichotomy for solutions to ẋ(t) = A(t)x(t), t ∈ R, is characterized
by the condition that ΓR is invertible on FR. Note that in the autonomous case where
U(t, τ) = e(t−τ)A, this is the evolution semigroup defined in (1.2). In the nonau-
tonomous case, the construction of an evolution semigroup is a way to “autonomize”
a time-varying Cauchy problem by replacing the time-dependent differential equation
ẋ = A(t)x on X by an autonomous differential equation ḟ = Γf on a superspace of
X-valued functions.

2. Evolution Semigroups and Cauchy Problems. In order to tackle the
problem of characterizing the exponential stability of solutions to the nonautonomous
Cauchy problem (1.1) on the half-line, R+, the following variant of the above evolu-
tion semigroup is needed. As before, let {U(t, τ)}t≥τ be an exponentially bounded
evolution family, and define operators Et, t ≥ 0, on functions f : R+ → X by

(Etf)(τ) =

{
U(τ, τ − t)f(τ − t), 0 ≤ t ≤ τ
0, 0 ≤ τ < t.

(2.1)

This defines a strongly continuous semigroup of operators on the space of functions
F = Lp(R+, X), and the generator of this evolution semigroup will be denoted by Γ.
This also defines a strongly continuous semigroup on C00(R+, X) = {f ∈ C0(R+, X) :
f(0) = 0}. For more information on evolution semigroups on the half-line see also
[26, 28, 29, 42].

2.1. Stability. The primary goal of this subsection is to identify the useful prop-
erties of the semigroup of operators defined in (2.1) which will be used in the subse-
quent sections. In particular, the following spectral mapping theorem will allow this
semigroup to be used in characterizing the exponential stability of solutions to (1.1)
on R+. See also [34, 42] for different proofs. The spectral symmetry portion of this
theorem is due to R. Rau [38].

Theorem 2.1. Let F denote C00(R+, X) or Lp(R+, X). The spectrum σ(Γ) is
a half plane, the spectrum σ(Et) is a disk centered at the origin, and

etσ(Γ) = σ(Et) \ {0}, t > 0.(2.2)

Proof. The arguments for the two cases F = C00(R+, X) and F = Lp(R+, X) are
similar, so only the first one is considered here.
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We first note that σ(Γ) is invariant under translations along iR and σ(Et) is
invariant under rotations about zero. This spectral symmetry is a consequence of the
fact that for ξ ∈ R,

Eteiξ·f = eiξ·e−iξtEtf, and Γeiξ· = eiξ·(Γ− iξ).(2.3)

The inclusion etσ(Γ) ⊆ σ(Et)\{0} follows from the standard spectral inclusion for
strongly continuous semigroups [27]. In view of the spectral symmetry, it suffices to
show that σ(Et)∩T = ∅ whenever 0 ∈ ρ(Γ). To this end, we replace the Banach space
X in Remarks 1.4 by C00(R+, X) and consider two semigroups {Ẽt}t≥0 and {Et}t≥0

with generators Γ̃ and G, respectively, acting on the space C0(R, C00(R+, X)). These
semigroups are defined by

(Ẽth)(τ, θ) =

{
U(θ, θ − t)h(τ − t, θ − t) for θ ≥ t,
0 for 0 ≤ θ < t,

(Eth)(τ, θ) =

{
U(θ, θ − t)h(τ, θ − t) for θ ≥ t,
0, for 0 ≤ θ ≤ t,

where τ ∈ R and h(τ, ·) ∈ C00(R+, X). Note that if H ∈ C0(R, C00(R+, X)), then
h(τ, ·) := H(τ) ∈ C00(R+, X) and we recognize {Ẽt}t≥0 as the evolution semigroup
induced by {Et}t≥0, as in (1.2):

(ẼtH)(τ) = EtH(τ − t).

Also, the semigroup {Et}t≥0 is the family of multiplication operators given by

(EtH)(τ) = EtH(τ).

The generator G of this semigroup is the operator of multiplication by Γ: (GH)(τ) =
Γ(H(τ)), where H(τ) ∈ Dom(Γ) for τ ∈ R. In particular, if 0 ∈ ρ(Γ) on F , then
(G−1H)(τ) = Γ−1(H(τ)), and so 0 ∈ ρ(G).

Let J denote the isometry on C0(R, C00(R+, X)) given by (Jh)(τ, θ) = h(τ +θ, θ)
for τ ∈ R, θ ∈ R+. Then J satisfies the identity:

(EtJh)(τ, θ) = (JẼth)(τ, θ), τ ∈ R, θ ∈ R+.

It follows that GJH = J Γ̃H for H ∈ Dom(Γ̃), and J−1GH = Γ̃J−1H for H ∈
Dom(G). Consequently σ(G) = σ(Γ̃) on C0(R, C00(R+, X)). In particular, 0 ∈ ρ(Γ̃).
Therefore, σ(Et)∩T = ∅ follows from Remarks 1.4 applied to the semigroup {Et}t≥0

on F in place of {etA}t≥0 on X.
The facts that σ(Γ) is a half plane and σ(Et) is a disk follow from the spectral

mapping property (2.2) and [38, Proposition 2].
An important consequence of this theorem is the property that the growth bound

ω0(Et) equals the spectral bound s(Γ). This leads to the following simple result on
stability.

Theorem 2.2. Let F denote C00(R+, X) or Lp(R+, X). An exponentially
bounded evolution family {U(t, τ)}t≥τ is exponentially stable if and only if the growth
bound ω0(Et) of the induced evolution semigroup on F is negative.

Proof. Let F = C00(R+, X). If {U(t, τ)}t≥τ is exponentially stable, then there
exist M > 1, β > 0 such that ‖U(t, τ)‖L(X) ≤ Me−β(t−τ), t ≥ τ . For τ ≥ 0 and
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f ∈ C00(R+, X),

‖Eτf‖C00(R+,X) = sup
t>0
‖Eτf(t)‖X = sup

t>τ
‖U(t, t− τ)f(t− τ)‖X

≤ sup
t>τ
‖U(t, t− τ)‖L(X)‖f(t− τ)‖X

≤Me−βτ‖f‖C00(R+,X).

Conversely, assume there exist M > 1, α > 0 such that ‖Et‖ ≤ Me−αt, t ≥ 0.
Let x ∈ X, ‖x‖ = 1. For fixed t > τ > 0, choose f ∈ C00(R+, X) such that
‖f‖C00(R+,X) = 1 and f(τ) = x. Then,

‖U(t, τ)x‖X = ‖U(t, τ)f(τ)‖X = ‖E(t−τ)f(t)‖X
≤ sup

θ>0
‖E(t−τ)f(θ)‖X

= ‖E(t−τ)f‖C00(R+,X)

≤Me−α(t−τ).

A similar argument works for F = Lp(R+, X).
The remainder of this subsection focuses on the operator used for determining

exponential stability. In fact, stability is characterized by the boundedness of this
operator which, as seen below, is equivalent to the invertibility of Γ, the generator of
the evolution semigroup. We begin with the autonomous case.

R. Datko and J. van Neerven have characterized the exponential stability of so-
lutions for autonomous equations ẋ = Ax, t ≥ 0, in terms of a convolution operator,
G, induced by {etA}t≥0. In this autonomous setting,

(Etf)(τ) =

{
etAf(τ − t), 0 ≤ t ≤ τ
0, 0 ≤ τ < t,

(2.4)

and the convolution operator takes the following form: for f ∈ L1
loc(R+, X),

(Gf)(t) :=
∫ t

0

eτAf(t− τ) dτ =
∫ ∞

0

(Eτf)(t) dτ, t ≥ 0.(2.5)

For reader’s convenience we cite Theorem 1.3 of [28] (see also [12]) in the following
remarks.

Remarks 2.3. If {etA}t≥0 is a strongly continuous semigroup on X, and 1 ≤
p <∞, then the following are equivalent:

(i) ω0(etA) < 0;
(ii) Gf ∈ Lp(R+, X) for all f ∈ Lp(R+, X);

(iii) Gf ∈ C0(R+, X) for all f ∈ C0(R+, X).
Remarks 2.4.

(a) Note that condition (ii) is equivalent to the boundedness of G on Lp(R+, X).
To see this, it suffices to show that the map f 7→ Gf is a closed operator on
Lp(R+, X), and then apply the closed graph theorem. For this, let fn → f
and Gfn → g in Lp(R+, X). Then (Gfn)(t)→ (Gf)(t) for each t ∈ R. Also,
every norm-convergent sequence in Lp(R+, X) contains a subsequence that
converges pointwise almost everywhere. Thus, (Gfnk)(t) → g(t) for almost
all t. This implies that Gf = g, as claimed.
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(b) Also, condition (iii) is equivalent to the boundedness of G on C0(R+, X).
This follows from the uniform boundedness principle applied to the operators
Gt : f 7→

∫ t
0
eτAf(t− τ) dτ .

We now extend this result so that it may be used to describe exponential stability
for a nonautonomous equation. For this define an operator G in an analogous way:
let {U(t, τ)}t≥τ be an evolution family and {Et}t≥0 the evolution semigroup in (2.1).
Then define G for f ∈ L1

loc(R+, X) as

(Gf)(t) :=
∫ ∞

0

(Eτf)(t) dτ =
∫ t

0

U(t, t− τ)f(t− τ) dτ

=
∫ t

0

U(t, τ)f(τ) dτ, t ≥ 0.
(2.6)

For G acting on F = C00(R+, X) or Lp(R+, X), standard semigroup properties show
that G equals −Γ−1 provided the semigroup {Et}t≥0 or the evolution family is uni-
formly exponentially stable. Parts (i) ⇔ (ii) of Remarks 2.3 and the nonautonomous
version below are the classical results by R. Datko [12]. Our proof uses the evolution
semigroup and creates a formally autonomous problem so that Remarks 2.3 can be
applied.

Theorem 2.5. The following are equivalent for the evolution family of operators
{U(t, τ)}t≥τ on X.

(i) {U(t, τ)}t≥τ is exponentially stable;
(ii) G is a bounded operator on Lp(R+, X);

(iii) G is a bounded operator on C0(R+, X).
Before proceeding with the proof, note that statement (ii) is equivalent to the state-
ment: Gf ∈ Lp(R+, X) for each f ∈ Lp(R+, X). This is seen as in Remark 2.4, above.
See also [5] for similar facts.

Proof. By Theorem 2.2, (i) implies that {Et}t≥0 is exponentially stable, and
formula (2.6) implies (ii) and (iii). The implication (ii)⇒(i) will be proved here;
the argument for (iii)⇒(i) is similar. The main idea is again to use the “change-of-
variables” technique, as in the proof of Theorem 2.1.

Consider the operator G̃ on Lp(R, Lp(R+, X)) = Lp(R× R+, X) defined as mul-
tiplication by G. More precisely, for h ∈ Lp(R × R+, X) with h(θ) := h(θ, ·) ∈
Lp(R+, X), define

(G̃h)(θ, t) = G(h(θ))(t) =
∫ t

0

U(t, t− τ)h(θ, t− τ) dτ, t ∈ R+, θ ∈ R.

In view of statement (ii), this operator is bounded. For the isometry J defined
on the space Lp(R, Lp(R+, X)) by (Jh)(θ, t) = h(θ + t, t), we have

(J−1
G̃Jh)(θ, t) =

∫ t

0

U(t, t− τ)h(θ − τ, t− τ) dτ.(2.7)

Next, let {Et}t≥0 be the evolution semigroup (2.1) induced by {U(t, τ)}t≥τ , and
define G∗ to be the operator of convolution with this semigroup as in (2.5); that is,

(G∗h)(θ) =
∫ ∞

0

Eτh(θ − τ) dτ, h ∈ Lp(R, Lp(R+, X)).(2.8)
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If h(θ, ·) = h(θ) ∈ Lp(R+, X), then by definition (2.1), evaluating (2.8) at t gives

[(G∗h)(θ)] (t) = (G∗h)(θ, t) =
∫ t

0

U(t, t− τ)h(θ − τ, t− τ) dτ, t ∈ R+, θ ∈ R.

(2.9)

From (2.7) it follows that G∗ = J−1
G̃J is a bounded operator on Lp(R, Lp(R+, X)).

Now, each function h+ ∈ Lp(R+, L
p(R+, X)) is an Lp(R+, X)-valued function

on the half line R+. We extend each such h+ to a function h ∈ Lp(R, Lp(R+, X))
by setting h(θ) = h+(θ) for θ ≥ 0 and h(θ) = 0 for θ < 0. Note that G∗h ∈
Lp(R, Lp(R+, X)) because G∗ is bounded on Lp(R, Lp(R+, X)). Consider the function
f+ : R+ → Lp(R+, X) defined by

f+(t) =
∫ t

0

Eτh+(t− τ) dτ =
∫ ∞

0

Eτh(t− τ) dτ, t ∈ R+.

To complete the proof of the theorem, it suffices to prove the following claim:

f+ ∈ Lp(R+, L
p(R+, X)).

Indeed, the operator h+ 7→ f+ is the convolution operator as in (2.5) defined by
the semigroup operators Et instead of etA. An application of Remarks 2.3 to Et on
Lp(R+, X) (in place of etA on X) shows that the semigroup {Et}t≥0 is exponentially
stable on Lp(R+, X) provided:

f+ ∈ Lp(R+, L
p(R+, X)) for each h+ ∈ Lp(R+, L

p(R+, X)).

But if {Et}t≥0 is exponentially stable, the evolution family {U(t, τ)}t≥τ is exponen-
tially stable by Theorem 2.2.

To prove the claim, apply formula (2.9) for h(θ, t) = h+(θ, t), θ ≥ 0 and h(θ, t) = 0,
θ < 0, t ∈ R+, where h+(θ) = h+(θ, ·). This gives

(G∗h)(θ, t) =

{∫min{θ,t}
0

U(t, t− τ)h+(θ − τ, t− τ) dτ for θ ≥ 0, t ∈ R+

(G∗h)(θ, t) = 0, for θ < 0, t ∈ R+

Thus, the function

θ 7→ (G∗h)(θ, ·) = (G∗h)(θ) ∈ Lp(R+, X)

is in the space Lp(R+, L
p(R+, X)). On the other hand, denoting f+(θ, ·) := f+(θ) ∈

Lp(R+, X), we have that

f+(θ, t) =
∫ min{θ,t}

0

U(t, t− τ)h+(θ − τ, t− τ) dτ, θ, t ∈ R+.

Thus, θ 7→ f+(θ, ·) = (G∗h)(θ, ·) is a function in Lp(R+, L
p(R+, X)), and the claim is

proved.
This theorem makes explicit, in the case of the half line R+, the relationship

between the stability of an evolution family {U(t, τ)}t≥τ and the generator, Γ, of
the corresponding evolution semigroup (2.1). Indeed, as shown above, stability is
equivalent to the boundedness of G, in which case G = −Γ−1. Combining Theorems
2.1, 2.2 and 2.5 yields the following corollary.

Corollary 2.6. Let {U(t, τ)}t≥τ be an exponentially bounded evolution family
and let Γ denote the generator of the induced evolution semigroup on Lp(R+, X),
1 ≤ p <∞, or C00(R+, X). The following are equivalent:
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(i) {U(t, τ)}t≥τ is exponentially stable;
(ii) Γ is invertible with Γ−1 = −G;

(iii) s(Γ) < 0.
For more information on stability and dichotomy of evolution families on the semiaxis
see [26].

2.2. Perturbations and robust stability. This subsection briefly considers
perturbations of (1.1) of the form

ẋ(t) = (A(t) +D(t))x(t), t ≥ 0.(2.10)

It will not, however, be assumed that (2.10) has a differentiable solution. For example,
let {etA0}t≥0 be a strongly continuous semigroup generated by A0, let A1(t) ∈ L(X)
for t ≥ 0, and define A(t) = A0 + A1(t). Then even if t 7→ A1(t) is continuous, the
Cauchy problem (1.1) may not have a differentiable solution for all initial conditions
x(0) = x ∈ Dom(A) = Dom(A0) (see, e.g.,[31]). Therefore we will want our devel-
opment to allow for equations with solutions that exist only in the following mild
sense.

Let {U(t, τ)}t≥τ be an evolution family of operators corresponding to a solution
of (1.1), and consider the nonautonomous inhomogeneous equation

ẋ(t) = A(t)x(t) + f(t), t ≥ 0,(2.11)

where f is a locally integrable X-valued function on R+. A function x(·) is a mild
solution of (2.11) with initial value x(θ) = xθ ∈ Dom(A(θ)) if

x(t) = U(t, θ)xθ +
∫ t

θ

U(t, τ)f(τ) dτ, t ≥ θ.

Given operators D(t), the existence of mild solutions to an additively perturbed equa-
tion (2.10) corresponds to the existence of an evolution family {U1(t, τ)}t≥τ satisfying

U1(t, θ)x = U(t, θ)x+
∫ t

θ

U(t, τ)D(τ)U1(τ, θ)x dτ.(2.12)

for all x ∈ X. It will be assumed that the perturbation operators, D(t), are strongly
measurable and essentially bounded functions of t. In view of this, we use the nota-
tion Ls(X) to denote the set L(X) endowed with the strong operator topology and
use L∞(R+,Ls(X)) to denote the set of bounded, strongly measurable L(X)-valued
functions on R+. A function D(·) ∈ L∞(R+,Ls(X)) induces a multiplication oper-
ator D defined by Dx(t) = D(t)x(t), for x(·) ∈ Lp(R+, X). In fact, D is a bounded
operator on Lp(R+, X) with ‖D‖ ≤ ‖D(·)‖∞ := ess supt∈R+

‖D(t)‖.
Evolution semigroups induced by an evolution family as in (2.1) have been studied

by several authors who have characterized such semigroups in terms of their generators
on general Banach function spaces of X-valued functions (see [36, 42] and the bibli-
ography therein). The sets F = Lp(R+, X) or F = C00(R+, X) considered here are
examples of more general “Banach function spaces.” In the development that follows
we use a theorem of R. Schnaubelt [42] (see also Räbiger et al. [35, 36]) which shows
exactly when a strongly continuous semigroup on F arises from a strongly continuous
evolution family on X. We state a version of this result which will be used below;
a more general version is proven in [36]. The set C1

c (R+) consists of differentiable
functions on R+ that have compact support.

Theorem 2.7. Let {T t}t≥0 be a strongly continuous semigroup generated by Γ
on F . The following are equivalent:
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(i) {T t}t≥0 is an evolution semigroup; i.e., there exists an exponentially bounded
evolution family so that T t is defined as in (2.1);

(ii) there exists a core, C, of Γ such that for all ϕ ∈ C1
c (R+), and f ∈ C, it follows

that ϕf ∈ Dom(Γ) and Γ(ϕf) = −ϕ′f+ϕΓf . Moreover, there exists λ ∈ ρ(Γ)
such that R(λ,Γ) : F → C00(R+, X) is continuous with dense range.

Now let {U(t, τ)}t≥τ be an evolution family on X and let Γ be the generator of the
corresponding evolution semigroup, {Et}t≥0, as in (2.1). If D(·) ∈ L∞(R+,Ls(X)),
then the multiplication operator D is a bounded operator on F = Lp(R+, X). Since
a bounded perturbation of a generator of a strongly continuous semigroup is itself
such a generator, the operator Γ1 = Γ+D generates a strongly continuous semigroup,
{Et1}t≥0 on F (see, e.g., [30]). In fact, Γ1 generates an evolution semigroup, see
[35, 42]:

Proposition 2.8. Let D(·) ∈ L∞(R+,Ls(X))., and let {U(t, τ)}t≥τ be an ex-
ponentially bounded evolution family. Then there exists a unique evolution family
U1 = {U1(t, τ)}t≥τ which solves the integral equation (2.12). Moreover, U1 is expo-
nentially stable if and only if Γ +D is invertible.

Proof. As already observed, Γ1 = Γ + D generates a strongly continuous semi-
group, {Et1}t≥0 on F . To see that this is, in fact, an evolution semigroup, note that
for λ ∈ ρ(Γ) ∩ ρ(Γ1),

Range(R(λ,Γ)) = Dom(Γ) = Dom(Γ +D) = Range(R(λ,Γ1))

is dense in C00(R+, X). Also, if C is a core for Γ, then it is a core for Γ1, and so for
ϕ ∈ C1

c (R), f ∈ C,

Γ1(ϕf) = Γ(ϕf) +D(ϕf) = −ϕ′f + ϕΓf + ϕDf = −ϕ′f + ϕ(Γ +D)f.

Consequently, Corollary 2.7 shows that {Et1}t≥0 corresponds to an evolutionary fam-
ily, {U1(t, τ)}t≥τ . Moreover, x(t) = U1(t, τ)x(τ) is seen to define a mild solution to
(2.10). Indeed,

Et1f = Etf +
∫ t

0

E(t−τ)DEτ1 f dτ,(2.13)

holds for all f ∈ F . In particular, for x ∈ X, and any ϕ ∈ C1
c (R), setting f = ϕ⊗ x

in (2.13), where ϕ⊗ x(t) = ϕ(t)x, and using a change of variables leads to

ϕ(θ)U1(t, θ)x = ϕ(θ)U(t, θ)x+ ϕ(θ)
∫ t

θ

U(t, τ)D(τ)U1(τ, θ)x dτ.

Therefore, (2.12) holds for all x ∈ X.
Finally, Theorem 2.6 shows that U1 is exponentially stable if and only if Γ1 is

invertible.
The existence of mild solutions under bounded perturbations of this type is well

known (see, e.g., [9]), but an immediate consequence of the approach given here is
the property of robustness for the stability of {U(t, τ)}t≥τ . Indeed, by continuity
properties of the spectrum of an operator Γ, there exists ε > 0 such that Γ1 is invert-
ible whenever ‖Γ1 − Γ‖ < ε; that is, {U1(t, τ)}t≥τ is exponentially stable whenever
‖D(·)‖∞ < ε. Also, the type of proof presented here can be extended to address the
case of unbounded perturbations. For an example of this, we refer to [36]. Finally, and
most important to the present paper, is the fact that this approach provides insight
into the concept of the stability radius. This topic is studied next.
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3. Stability Radius. The goal of this section is to use the previous development
to study the (complex) stability radius of an exponentially stable system. Loosely
speaking, this is a measurement on the size of the smallest operator under which the
additively perturbed system looses exponential stability. This is an important concept
for linear systems theory and was introduced by D. Hinrichsen and A. J. Pritchard
as the basis for a state-space approach to studying robustness of linear time-invariant
[16] and time-varying systems [15, 17, 32]. A systematic study of various stability
radii in the spirit of the current paper has recently be given by A. Fischer and J. van
Neerven [13].

3.1. General estimates. In this subsection we give estimates for the stability
radius of general nonautonomous systems on Banach spaces. The perturbations con-
sidered here are additive “structured” perturbations of output feedback type. That is,
let U and Y be Banach spaces and let ∆(t) : Y → U denote an unknown disturbance
operator. The operators B(t) : U → X and C(t) : X → Y describe the structure
of the perturbation in the following (formal) sense: if u(t) = ∆(t)y(t) is viewed as a
feedback for the system

ẋ(t) = A(t)x(t) +B(t)u(t), x(s) = xs ∈ Dom(A(s)),
y(t) = C(t)x(t), t ≥ s ≥ 0,

(3.1)

then the nominal system ẋ(t) = A(t)x(t) is subject to the structured perturbation:

ẋ(t) = (A(t) +B(t)∆(t)C(t))x(t), t ≥ 0.(3.2)

In this section B and C do not represent input and output operators, rather they
describe the structure of the uncertainty of the system. Also, systems considered
throughout this paper are not assumed to have differentiable solutions and so (3.2) is
to be interpreted in the mild sense as described in (2.12) where D(t) = B(t)∆(t)C(t).
Similarly, (3.1) is interpreted in the mild sense; that is, there exists a strongly con-
tinuous exponentially bounded evolution family {U(t, τ)}t≥τ on a Banach space X
which satisfies

x(t) = U(t, s)x(s) +
∫ t

s

U(t, τ)B(τ)u(τ) dτ,

y(t) = C(t)x(t), t ≥ s ≥ 0.
(3.3)

In the case of time-invariant systems, equation (3.3) takes the form

x(t) = etAx0 +
∫ t

0

e(t−τ)ABu(τ) dτ,

y(t) = Cx(t), t ≥ 0,
(3.4)

where {etA}t≥0 is a strongly continuous semigroup on X generated by A, x(0) = x0 ∈
Dom(A).

It should be emphasized that we will not address questions concerning the ex-
istence of solutions for a perturbed system (3.2) beyond the point already discussed
in Proposition 2.8. In view of that proposition, we make the following assumptions:
B, C and ∆ are strongly measurable and essentially bounded functions of t; i.e.,
B(·) ∈ L∞(R+,Ls(U,X)), C(·) ∈ L∞(R+,Ls(X,Y )) and ∆(·) ∈ L∞(R+,Ls(Y, U)).
As such, they induce bounded multiplication operators, B, C and ∆̃ acting on the
spaces Lp(R+, U), Lp(R+, X) and Lp(R+, Y ), respectively.
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Next, for an exponentially bounded evolution family {U(t, τ)}t≥τ , define the
“input-output” operator L on functions u : R+ → U by the rule

(Lu)(t) = C(t)
∫ t

0

U(t, τ)B(τ)u(τ) dτ.

Using the above notation note that L = CGB. Much of the stability analysis that
follows is based on this observation in combination with Theorem 2.5 which shows
that the operator G completely characterizes stability of the corresponding evolution
family.

We now turn to the definition of the stability radius. For this let U = {U(t, τ)}t≥τ
be an exponentially stable evolution family on X. Set D = B∆̃C and let U∆ =
{U∆(t, τ)}t≥τ denote the evolution family corresponding to solutions of the perturbed
equation (2.10). That is, U∆ satisfies

U∆(t, s)x = U(t, s)x+
∫ t

s

U(t, τ)B(τ)∆(τ)C(τ)U∆(τ, s)x dτ, x ∈ X.

Define the (complex) stability radius for U with respect to the perturbation structure
(B(·), C(·)) as the quantity

rstab(U , B,C) = sup{r ≥ 0 : ‖∆(·)‖∞ ≤ r ⇒ U∆ is exponentially stable}.

This definition applies to both nonautonomous and autonomous systems, though in
the latter case the notation rstab({etA}, B, C)) will be used to distinguish the case
where all the operators except ∆(t) are independent of t. We will have occasion to
consider the constant stability radius which is defined for the case in which ∆(t) ≡ ∆ is
constant; this will be denoted by rcstab({etA}, B,C)) or rcstab(U , B, C)), depending
on the context. The above remarks concerning Γ + D (see Proposition 2.8), when
combined with Theorem 2.2, make it clear that

rstab(U , B,C) = sup{r ≥ 0 : ‖∆(·)‖∞ ≤ r ⇒ Γ + B∆̃C is invertible}.(3.5)

It is well known that for autonomous systems in which U and Y are Hilbert
spaces and p = 2, the stability radius may be expressed in terms of the norm of the
input-output operator or the transfer function:

1
‖L‖L(L2)

= rstab({etA}, B, C) =
1

sups∈R ‖C(A− is)−1B‖
;(3.6)

see, e.g., [17, Theorem 3.5]. For nonautonomous equations, a scalar example given in
Example 4.4 of [15] shows that, in general, a strict inequality 1/‖L‖ < rstab(U , B,C)
may hold. Moreover, even for autonomous systems, when Banach spaces are allowed
or when p 6= 2, Example 3.13 and Example 3.15 below will show that neither of
the equalities in (3.6) necessarily hold. Subsection 3.3 below focuses on autonomous
equations and a primary objective there is to prove the following result.

Theorem 3.1. For the general autonomous systems,

1
‖L‖L(Lp)

≤ rstab({etA}, B,C) ≤ 1
sups∈R ‖C(A− is)−1B‖

, 1 ≤ p <∞.(3.7)

As seen next, the lower bound here holds for general nonautonomous systems and
may be proven in a very direct way using the make-up of the operator L = CGB. This
lower bound is also proven in [17, Theorem 3.2] using a completely different approach.



STABILITY IN BANACH SPACES 15

Theorem 3.2. Assume U is an exponentially stable evolution family and let Γ
denote the generator of the corresponding evolution semigroup. If

B(·) ∈ L∞(R+,Ls(U,X)) and C(·) ∈ L∞(R+,Ls(X,Y )),

then L is a bounded operator from Lp(R+, U) to Lp(R+, Y ), 1 ≤ p <∞, the formula

L = CGB = −CΓ−1B

holds, and

1
‖L‖

≤ rstab(U , B,C).(3.8)

In the “unstructured” case, where U = Y = X and B = C = I, one has

L = −Γ−1, and
1

‖Γ−1‖
≤ rstab(U , I, I) ≤ 1

r(Γ−1)
,

where r(·) denotes the spectral radius.
Proof. Since U is exponentially stable, Γ is invertible and Γ−1 = −G. The

required formula for L follows from (2.6).
Set H := Γ−1B∆̃. To prove (3.8), let ∆(·) ∈ L∞(R+,Ls(Y,U)) and suppose that

‖∆(·)‖∞ < 1/‖L‖. Then ‖L∆̃‖ < 1, and hence I−L∆̃ = I+CΓ−1B∆̃ is invertible on
Lp(R+, Y ). That is, I+CH is invertible on Lp(R+, Y ), and hence I+HC is invertible
on Lp(R+, X) (with inverse (I −H(I + CH)−1C)). Now,

Γ + B∆̃C = Γ(I + Γ−1B∆̃C) = Γ(I +HC)

and so Γ + B∆̃C is invertible. It follows from the expression (3.5) that 1/‖L‖ ≤
rstab(U , B, C).

For the last assertion, suppose that rstab(U , I, I) > 1/r(Γ−1). Then there exists
λ such that |λ| = r(Γ−1) and λ+ Γ−1 is not invertible. But then setting ∆̃ ≡ 1

λ gives
‖∆̃‖ = 1

|λ| < rstab(U , I, I), and so Γ + ∆̃ = ∆̃(λ+ Γ−1)Γ is invertible, a contradiction.

3.2. The transfer function for nonautonomous systems. In this subsection
we consider a time-varying version of equation (3.6) and then observe that the concept
of a transfer function, or frequency-response function, arises naturally from these
ideas. For this we assume in this subsection that X, U and Y are Hilbert spaces and
p = 2.

Let {U(t, τ)}t≥τ be an uniformly exponentially stable evolution family and let
{Et}t≥0 be the induced evolution semigroup with generator Γ on L2(R+, X). Recall
that B and C denote multiplication operators, with respective multipliers B(·) and
C(·), that act on the spaces L2(R+, U) and L2(R+, X), respectively. Let B̃ and C̃
denote operators of multiplication induced by B and C, respectively; e.g., (B̃u)(t) =
B(u(t)), for u : R+ → L2(R+, U). Now consider the operator G∗ as defined in
equation (2.8) and note that operator L∗ := C̃G∗B̃ may be viewed (formally) as an
input-output operator for the “autonomized” system: ḟ = Γf + Bu, g = Cf , where
the state space is L2(R+, X). It follows from the known Hilbert-space equalities in
(3.6) that

1
‖L∗‖

= rstab({Et},B, C) =
1

sups∈R ‖C(Γ− is)−1B‖
.
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Note, however, that the rescaling identities (2.3) for Γ imply that

‖L∗‖ = ‖C(Γ− is)−1B‖ = ‖CΓ−1B‖ = ‖L‖,

and so the stability radius for the evolution semigroup is also 1/‖L‖. In view of the
above-mentioned nonautonomous scalar example for which 1/‖L‖ < rstab(U , B,C) we
see that even though the evolution semigroup (or its generator) completely determines
the exponential stability of a system, it does not provide a formula for the stability
radius.

However, the operator C(Γ − is)−1B appearing above suggests that the transfer
function for time-varying systems arises naturally when viewed in the context of evo-
lution semigroups. Several authors have considered the concept of a tranasfer function
for nonautonomous systems but the work of J. Ball, I. Gohberg, and M.A. Kaashoek [3]
seems to be the most comprehensive in providing a system-theoretic input-output in-
terpretation for the value of such a transfer function at a point. Their interpretation
justifies the term frequency response function for time-varying finite-dimensional sys-
tems with “time-varying complex exponential inputs.” Our remarks concerning the
frequency response for time-varying infinite-dimensional systems will be restricted to
inputs of the form u(t) = u0e

λt.
For motivation, consider the input-output operator L associated with an au-

tonomous system (3.4) where the nominal system is exponentially stable. The transfer
function of L is the unique bounded analytic L(U, Y )-valued function, H, defined on
C+ = {λ ∈ C : Re λ > 0} such that for any u ∈ L2(R+, U),

(L̂u)(λ) = H(λ)û(λ), λ ∈ C+,

where ̂ denotes the Laplace transform (see, e.g., [44]). In this autonomous set-
ting, A generates a uniformly exponentially stable strongly continuous semigroup,
and L = CGB where G is the operator of convolution with the semigroup operators
etA (see (2.5)). Standard arguments show that (L̂u)(λ) = C(λ−A)−1Bû(λ); that is,
H(λ) = C(λ−A)−1B.

Now let L be the input-output operator for the nonautonomous system (3.3). We
wish to identify the transfer function of L as the Laplace transform of the appropriate
operator. We are guided by the fact that, just as (λ−A)−1 may be expressed as the
Laplace transform of the semigroup generated by A, the operator (λ − Γ)−1 is the
Laplace transform of the evolution semigroup. For nonautonomous systems, L is again
given by CGB, although now G from (2.6) is not, generally, a convolution operator.
So instead recall the operator G∗ from (2.8) which is the operator of convolution with
the evolution semigroup {Et}t≥0. As noted above, the operator L∗ := C̃G∗B̃ may be
viewed as an input-output operator for an autonomous system (where the state space
is L2(R+, X)). Therefore, the autonomous theory applies directly to show that, for
u ∈ L2(R+, L

2(R+, U)),

(L̂∗u)(λ) = C(λ− Γ)−1Bû(λ).(3.9)

In other words, the transfer function for L∗ is C(λ− Γ)−1B, where

C(λ− Γ)−1Bu = C
∫ ∞

0

e−λτEτBu dτ, u ∈ L2(R+, U).

Evaluating these expressions at t ∈ R+ gives

[C(λ− Γ)−1Bu](t) =
∫ t

0

C(t)U(t, τ)B(τ)u(τ)e−λ(t−τ) dτ.(3.10)
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It is natural to call C(λ−Γ)−1B the transfer function for the nonautonomous system.
Moreover, the following remarks show that, by looking at the right-hand side of (3.10),
this gives a natural “frequency response” function for nonautonomous systems. To
see this, we first consider autonomous systems and note that the definition of the
transfer function for an autonomous system can be extended to allow for a class of
“Laplace transformable” functions that are in L2

loc(R+, U) (see, e.g., [44]). This class
includes constant functions of the form v0(t) = u0, t ≥ 0, for a given u0 ∈ U . If a
periodic input signal of the form u(t) = u0e

iωt, t ≥ 0, (for some u0 ∈ U and ω ∈ R)
is fed into an autonomous system with initial condition x(0) = x0, then, by definition
of the input-output operator, we have

(Lu)(t) = C(iω −A)−1Bu0 · eiωt − CetAx0, (Lu)(t) = C

∫ t

0

e(t−s)ABu(s) ds.

Thus, the output

y(t;u(·), x0) = (Lu)(t) + CetAx0 = C(iω −A)−1Bu0 · eiωt

has the same frequency as the input. In view of this, the function C(iω − A)−1B
is sometimes called the frequency response function. Now recall that the semigroup
{etA}t≥0 is stable and so limt→∞ ‖CetAx0‖ = 0. On the other hand, consider v(t) =
u0 and (formally) apply C(iω−Γ)−1B to this v. For x0 = (iω−A)−1Bu0, a calculation
based on the Laplace transform formula for the resolvent of the generator (applied to
the evolution semigroup {Et}t≥0) yields the identity[

C(iω − Γ)−1Bu0

]
(t) = C(iω −A)−1Bu0 − CetAx0 · e−iωt.

Let us consider this expression [C(iω−Γ)−1Bu0](t) in the nonautonomous case. By
equation (3.10), this coincides with the frequency response function for time-varying
systems which is defined in [3, Corollary 3.2] by the formula∫ t

0

C(t)U(t, τ)B(τ)u0e
iω(τ−t) dτ.

Also, as noted in this reference, the result of our derivation agrees the Arveson fre-
quency response function as it appears in [43]. We recover it here explicitly as the
Laplace transform of an input-output operator (see equation (3.9)).

3.3. Autonomous systems. In this subsection we give the proof of (3.7) when
X, U and Y are Banach spaces. In the process, however, we also consider two other
“stability radii”: a pointwise stability radius and a dichotomy radius.

First, we give a generalization to Banach spaces of Theorem 1.1 (cf. [22]). Here,
Fper denotes the Banach space Lp([0, 2π], X), 1 ≤ p < ∞. If {etA}t≥0 is a strongly
continuous semigroup on X, {Etper}t≥0 will denote the evolution semigroup defined
on Fper by the rule Etperf(s) = etAf([s − t](mod 2π)); its generator will be denoted
by Γper. The symbol Λ will be used to denote the set of all finite sequences {vk}Nk=−N
in X or D(A), or {uk}Nk=−N in U .

Theorem 3.3. Let A generate a C0 semigroup {etA}t≥0 on X. Let B and C be
as above, and ∆ ∈ (Y,U). Let {et(A+B∆C)}t≥0 be the strongly continuous semigroup
generated by A+B∆C. Then the following are equivalent:
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(i) 1 ∈ ρ(e2π(A+B∆C));
(ii) iZ ⊂ ρ(A+B∆C) and

sup
{vk}∈Λ

‖
∑
k(A− ik +B∆C)−1vke

ik(·)‖Fper
‖
∑
k vke

ik(·)‖Fper
<∞;

(iii) iZ ⊂ ρ(A+B∆C) and

inf
{vk}∈Λ

‖
∑
k(A− ik +B∆C)vkeik(·)‖Fper
‖
∑
k vke

ik(·)‖Fper
> 0.

Further, if Γper denotes the generator of the evolution semigroup on Fper, as above,
and if 1 ∈ ρ(e2πA), then Γper is invertible and

‖CΓ−1
perB‖ = sup

{uk}∈Λ

‖
∑
k C(A− ik)−1Buke

ik(·)‖Lp([0,2π],Y )

‖
∑
k uke

ik(·)‖Lp([0,2π],U)

(3.11)

where CΓ−1
perB ∈ L(Lp([0, 2π], U), Lp([0, 2π], Y )).

Proof. The equivalence of (i)–(iii) follows as in Theorem 2.3 of [22]. For the last
statement, let {uk} be a finite set in U and consider functions f and g of the form

f(s) =
∑
k

(A− ik)−1Buke
iks , and g(s) =

∑
k

Buke
iks .

Then f = Γ−1
perg. For,

(Γperf)(s) =
d

dt

∣∣∣∣
t=0

etAf([s− t]mod2π)

=
∑
k

[A(A− ik)−1Buke
iks − ik(A− ik)−1Buke

iks] = g(s).

For functions of the form h(s) =
∑
k uke

iks, where {uk}k is a finite set in U , we have
CΓ−1Bh =

∑
k C(A − ik)−1Buke

ik(·). Taking the supremum over all such functions
gives:

‖CΓ−1
perB‖ = sup

h

‖CΓ−1
perBh‖
‖h‖

= sup
{uk}∈Λ

‖
∑
k C(A− ik)−1Buke

ik(·)‖Lp([0,2π],Y )

‖
∑
k uke

ik(·)‖Lp([0,2π],U)

.

In view of these facts we introduce a “pointwise” variant of the constant stability
radius: for t0 > 0 and λ ∈ ρ(et0A), define the pointwise stability radius

rcλstab(e
t0A, B,C) := sup{r > 0 : ‖∆‖L(Y,U) ≤ r ⇒ λ ∈ ρ(et0(A+B∆C))}.

By rescaling, the study of this quantity can be reduced to the case of λ = 1 and
t0 = 2π. Indeed,

rcλstab(e
t0A, B, C) =

2π
t0
rcλstab(e

2πA′ , B, C), where A′ =
t0
2π
A.
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Also, after writing λ = |λ|eiθ (θ ∈ R), note that

rcλstab(e
2πA, B,C) = rc1stab(e

2πA′′ , B, C), for A′′ = A− 1
2π

(ln |λ|+ iθ).

Therefore,

rcλstab(e
t0A, B, C) =

2π
t0
rc1stab(e

2πA′′′ , B,C)

for

A′′′ =
1

2π
(t0A− ln |λ| − iθ).

In the following theorem we estimate rc1stab(e
2πA, B,C). The idea for the proof

goes back to [17]. See also further developments in [13].
Theorem 3.4. Let {etA}t≥0 be a strongly continuous semigroup generated by A

on X, and assume 1 ∈ ρ(e2πA). Let Γper denote the generator of the induced evolution
semigroup on Fper. Let B ∈ L(U,X), and C ∈ L(X,Y ). Then

1
‖CΓ−1

perB‖
≤ rc1stab(e2πA, B,C) ≤ 1

supk∈Z ‖C(A− ik)−1B‖
.(3.12)

If U and Y are a Hilbert spaces and p = 2, then equalities hold in (3.12).
Proof. The first inequality follows from an argument as in Theorem 3.2. For the

second inequality, let ε > 0, and choose ū ∈ U with ‖ū‖ = 1 and k0 ∈ Z such that

‖C(A− ik0)−1Bū‖Y ≥ sup
k∈Z
‖C(A− ik)−1B‖ − ε > 0.

Using the Hahn-Banach Theorem, choose y∗ ∈ Y ∗ with ‖y∗‖ ≤ 1 such that〈
y∗,

C(A− ik0)−1Bū

‖C(A− ik0)−1Bū‖Y

〉
= 1.

Define ∆ ∈ L(Y,U) by

∆y = − 〈y∗, y〉
‖C(A− ik0)−1Bū‖Y

ū, y ∈ Y.

We note that

∆C(A− ik0)−1Bū = −〈y
∗, C(A− ik0)−1Bū〉
‖C(A− ik0)−1Bū‖Y

ū = −ū,(3.13)

and

‖∆‖ ≤ 1
‖C(A− ik0)−1Bū‖Y

≤ 1
supk∈Z ‖C(A− ik0)−1Bū‖Y − ε

.(3.14)

Now set v̄ := (A− ik0)−1Bū in X. By (3.13), ∆Cv̄ = −ū, and so

(A− ik0 +B∆C)v̄ = (A− ik0)v̄ +B∆Cv̄ = Bū−Bū = 0.
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Therefore,

inf
{vk}∈Λ

‖
∑
k(A− ik +B∆C)vkeik(·)‖Fper
‖
∑
k uke

ik(·)‖Fper
≤
‖(A− ik0 +B∆C)v̄eik0(·)‖Fper

‖v̄eik0(·)‖Fper
= 0.

By Theorem 3.3, 1 /∈ ρ(e2π(A+B∆C)). This shows that rc1stab(e
2πA, B,C) ≤ ‖∆‖.

To finish the proof, suppose that rc1stab(e
2πA, B, C) > (supk∈Z ‖C(A−ik)−1B‖)−1.

Then with r := (supk∈Z ‖C(A− ik)−1Bū‖Y − ε)−1, and ε > 0 chosen to be sufficiently
small, one has

1
supk∈Z ‖C(A− ik)−1Bū‖Y

< r < rc1stab(e
2πA, B, C).

But then by (3.14), ‖∆‖ ≤ r < rc1stab(e
2πA, B,C), which is a contradiction.

For the last statement of the theorem, note that Parseval’s formula applied to
(3.11) gives

‖CΓ−1
perB‖ = sup

{uk}∈Λ

(∑
k ‖C(A− ik)−1Buk‖2Y

)1/2
(
∑
k ‖uk‖2U )1/2

≤ sup
k∈Z
‖C(A− ik)−1B‖.(3.15)

Therefore,

1
‖CΓ−1

perB‖
≥ 1

supk∈Z ‖C(A− ik)−1B‖

and hence equalities hold in (3.12).
Next we consider the following “hyperbolic” variant of the constant stability ra-

dius. Recall, that a strongly continuous semigroup {etA}t≥0 on X is called hyperbolic
if

σ(etA) ∩ T = ∅, where T = {z ∈ C : |z| = 1},

for some (and, hence, for all) t > 0 (see, e.g., [29]). The hyperbolic semigroups are
those for which the differential equation ẋ = Ax has exponential dichotomy (see, e.g.,
[11]) with the dichotomy projection P being the Riesz projection corresponding to
the part of spectrum of eA that lies in the open unit disc.

For a given hyperbolic semigroup {etA}t≥0 and operators B, C we define the
constant dichotomy radius as:

rcdich({etA}, B, C) := sup{r ≥ 0 : ‖∆‖L(Y,U) ≤ r implies

σ(et(A+B∆C)) ∩ T = ∅ for all t > 0}.

The dichotomy radius measures the size of the smallest ∆ ∈ L(Y, U) for which the
perturbed equation ẋ = [A+B∆C]x looses the exponential dichotomy.

Now for any ξ ∈ [0, 1], consider the rescaled semigroup generated by Aξ := A− iξ
consisting of operators etAξ = e−iξtetA, t ≥ 0. The pointwise stability radius can be
related to the dichotomy radius as follows.

Lemma 3.5. Let {etA}t≥0 be a hyperbolic semigroup. Then

rcdich({etA}, B, C) = inf
ξ∈[0,1]

rc1stab(e
2πAξ , B, C).
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Proof. Denote the left-hand side by α and the right-hand side by β. First fix r < β.
Let ξ ∈ [0, 1]. If ‖∆‖ ≤ r, then 1 ∈ ρ(e2π(Aξ+B∆C)) and so eiξ2π ∈ ρ(e2π(A+B∆C)) for
all ξ ∈ [0, 1]. That is, eis ∈ ρ(e2π(A+B∆C)) for all s ∈ R, and so σ(e2π(A+B∆C))∩T = ∅.
This shows that r ≤ α, and so β ≤ α.

Now suppose r < α. If ‖∆‖ ≤ r, then σ({et(A+B∆C)}) ∩ T = ∅, and so eiξt ∈
ρ(et(A+B∆C)) for all ξ ∈ [0, 1], t ∈ R. That is, 1 ∈ ρ(et(Aξ+B∆C)). This says r ≤ β
and so α ≤ β.

Under the additional assumption that the semigroup {etA}t≥0 is exponentially
stable (that is, hyperbolic with a trivial dichotomy projection P = I), Lemma 3.5
gives, in fact, a formula for the constant stability radius. Indeed, the following simple
proposition holds.

Proposition 3.6. Let {etA}t≥0 be an exponentially stable semigroup. Then

rcdich({etA}, B, C) = rcstab({etA}, B,C).

Proof. Denote the left-hand side by α and the right-hand side by β. Take
r < β and any ∆ with ‖∆‖ ≤ r. By definition of the constant stability radius,
ω0({et(A+B∆C)}) < 0. In particular, σ(et(A+B∆C)) ∩ T = ∅, and r ≤ α shows that
β ≤ α.

Suppose that β < r < α for some r. By the definition of the stability radius β,
there exists a ∆ with ‖∆‖ ∈ (β, r) such that the semigroup {et(A+B∆C)}t≥0 is not
stable.

For any τ ∈ [0, 1] one has ‖τ∆‖ ≤ r < α. By the definition of the dichotomy radius
α it follows that the semigroup {et(A+τB∆C)}t≥0 is hyperbolic for each τ ∈ [0, 1]. Now
consider its dichotomy projection

P (τ) = (2πi)−1

∫
T

(
λ− eA+τB∆C

)−1
dλ,

which is the Riesz projection corresponding to the part of σ(eA+τB∆C) located inside
of the open unit disk. The function τ 7→ P (τ) is norm continuous. Indeed, since the
bounded perturbation τB∆C of the generator A is continuous in τ , the operators
et(A+τB∆C), t ≥ 0, depend on τ continuously (see, e.g., [30, Corollary 3.1.3]); this
implies the continuity of P (·) (see, e.g., [11, Theorem I.2.2]).

By assumption {etA}t≥0 is exponentially stable, so P (0) = I. Also, P (1) 6= I
since the semigroup {et(A+B∆C)}t≥0 with ‖∆‖ ≤ r < α is hyperbolic but not stable.
Since either ‖I − P (τ)‖ = 0 or ‖I − P (τ)‖ ≥ 1, this contradicts the continuity of
‖P (·)‖.

A review of the above development shows that the inequality claimed in (3.7) of
Theorem 3.1 can now be proved.
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Proof. (of Theorem 3.1) Indeed, rstab({etA}, B, C) ≤ rcstab({etA}, B,C), and so

1
‖L‖

≤ rstab({etA}, B,C) ≤ rcstab({etA}, B, C) (Theorem 3.2)

≤ rcdich({etA}, B, C) (Proposition 3.6)

≤ inf
ξ∈[0,1]

rc1stab(e
2πAξ , B,C) (Lemma 3.5)

≤ inf
ξ∈[0,1]

1
supk∈Z ‖C(Aξ − ik)−1B‖

(Theorem 3.4)

=
1

sups∈R ‖C(A− is)−1B‖

We will need below the following simple corollary that holds for bounded gener-
ators A. (In fact, as shown in [13, Cor. 2.5], formula (3.16) below holds provided A
generates a semigroup {etA}t≥0 that is uniformly continuous just for t > 0.)

Corollary 3.7. Assume A ∈ L(X) generates a (uniformly continuous) stable
semigroup on a Banach space X. Then

rcstab({etA}, B, C) =
1

sups∈R ‖C(A− is)−1B‖
.(3.16)

Proof. By Theorem 3.1, it remains to prove only the inequality “≥”. Fix ∆ with
‖∆‖ strictly less than the right-hand side of (3.16). Since A + B∆C ∈ L(X), it
suffices to show that A + B∆C − λ = (A − λ)(I + (A − λ)−1B∆C) is invertible for
each λ with Re λ ≥ 0. By the analyticity of resolvent, supRe λ≥0 ‖C(A − λ)−1B‖ ≤
sups∈R ‖C(A− is)−1B‖. Thus,

‖∆‖ < 1
sups∈R ‖C(A− is)−1B‖

≤ 1
supRe λ≥0 ‖C(A− λ)−1B‖

≤ 1
‖C(A− λ)−1B‖

, Re λ ≥ 0

implies that I+C(A−λ)−1B∆ is invertible. Therefore (cf. the proof of Theorem 3.2),
I + (A− λ)−1B∆C is invertible.

3.4. The norm of the input-output operator. Since the lower bound on the
stability radius is given by the norm of the input-output operator, which is defined by
way of the solution operators, it is of interest to express this quantity in terms of the
operators A, B and C. In this subsection it is shown that for autonomous systems
this quantity can, in fact, be expressed explicitly in terms of the transfer function:

‖L‖ = sup
u∈S(R,U)

‖
∫
R
C(A− is)−1Bu(s)eis(·) ds‖Lp(R,Y )

‖
∫
R
u(s)eis(·) ds‖Lp(R,U)

.(3.17)

Here we use S(R, X) to denote the Schwartz class of rapidly decreasing X-valued
functions defined on R: {v : R→ X

∣∣ sups∈R ‖smv(n)(s)‖ <∞;n,m ∈ N}. As noted
in (3.6), ‖L‖ equals sups∈R ‖C(A− is)−1B‖ if U and Y are Hilbert spaces and p = 2.
The section concludes by providing a similar expression, involving sums, which serves
as a lower bound for the constant stability radius.
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The current focus is on autonomous systems so let {etA}t≥0 be a strongly con-
tinuous semigroup generated by A and consider the evolution semigroups {Et

R
}t≥0

defined on functions on the entire real line as in (1.2), and {Et}t≥0 defined for func-
tions on the half-line as in (2.4). As before, ΓR and Γ will denote the generators of
these semigroups on Lp(R, X) and Lp(R+, X), respectively. Both semigroups will be
used as we first show that ‖CΓ−1

R
B‖ equals the expression in (3.17) and then check

that ‖L‖ ≡ ‖CΓ−1B‖ = ‖CΓ−1
R
B‖.

Given v ∈ S(R, X), let gv denote the function

gv(τ) =
1

2π

∫
R

v(s)eiτs ds, τ ∈ R,

and set G = {gv : v ∈ S(R, X)}. Assuming sups∈R ‖(A − is)−1‖ < ∞, define, for a
given v ∈ S(R, X), the function

fv(τ) =
1

2π

∫
R

(A− is)−1v(s)eiτs ds, τ ∈ R,

and set F = {fv : v ∈ S(R, X)}.
Proposition 3.8. Assume sups∈R ‖(A− is)−1‖ <∞. Then
(i) G consists of differentiable functions, and is dense in Lp(R, X);

(ii) F is dense in Dom(ΓR);
(iii) if v ∈ S(R, X) then ΓRfv = gv.
Proof. For g ∈ L1(R, X), denote the Fourier transform by

ĝ(τ) =
1

2π

∫
R

e−isτg(s) ds.

Note that G = {g : R→ X : ∃ v ∈ S(R, X) so that ĝ = v}, and so G contains the set
{g ∈ L1(R, X) : ĝ ∈ S(R, X)}. Since the latter set is dense in Lp(R, X), property (i)
follows.

G consists of differentiable functions since for v ∈ S(R, X), the integral defining gv
converges absolutely. Moreover, for v ∈ S(R, X), the function w(s) = (A− is)−1v(s),
s ∈ R, is also in S(R, X), since sups∈R ‖(A − is)−1‖ < ∞. Hence fv is differentiable
with derivative

f ′v(τ) =
1

2π

∫
R

is(A− is)−1v(s)eiτs ds =
1

2π

∫
R

isw(s)eiτs ds.

So f ′v ∈ Lp(R, X), and hence F is dense in Dom(−d/dt+A).
Property (iii) follows from the following calculation:

(Γfv)(τ) =
1

2π

∫
R

[−is(A− is)−1v(s)eisτ +A(A− is)−1v(s)eisτ ] ds

=
1

2π

∫
R

(A− is)(A− is)−1v(s)eisτ ds = gv(τ).

Set ΛS = {v ∈ S(R, X) : v(s) ∈ Dom(A) for s ∈ R, Av ∈ S(R, X)}.
Proposition 3.9. Let {etA}t≥0 be a strongly continuous semigroup generated by

A. Let Γ and ΓR be the generators of the evolution semigroups on Lp(R+, X) and
Lp(R, X), as defined in (2.4) and (1.2), respectively. Then the following assertions
hold:
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(i) if σ(A) ∩ iR = ∅ and sups∈R ‖(A− is)−1‖ <∞ then

‖ΓR‖•,Lp(R,X) = inf
v∈ΛS

‖
∫
R
(A− is)v(s)eis(·) ds‖Lp(R,X)

‖
∫
R
v(s)eis(·) ds‖Lp(R,X)

;

(ii) if ΓR is invertible on Lp(R, X), then {etA}t≥0 is hyperbolic and

‖Γ−1
R
‖L(Lp(R,X)) = sup

v∈S(R,X)

‖
∫
R
(A− is)−1v(s)eis(·) ds‖Lp(R,X)

‖
∫
R
v(s)eis(·) ds‖Lp(R,X)

;

(iii) if Γ is invertible on Lp(R+, X), then {etA}t≥0 is exponentially stable and

‖Γ−1‖L(Lp(R+,X)) = ‖Γ−1
R
‖L(Lp(R,X)).

Proof. To show (i) let v ∈ S(R, X). Since sups∈R ‖(A− is)−1‖ <∞, the formula
w(s) = (A− is)−1v(s), s ∈ R, defines a function, w, in ΛS . Now,

gv(τ) =
1

2π

∫
R

(A− is)(A− is)−1v(s)eisτ ds =
1

2π

∫
R

(A− is)w(s)eisτ ds

and

fv(τ) =
1

2π

∫
R

w(s)eisτ ds.

However, from Proposition 3.8,

‖ΓR‖• = inf
fv∈F

‖ΓRfv‖
‖fv‖

= inf
v∈S(R,X)

‖gv‖
‖fv‖

= inf
w∈ΛS

‖
∫
R
(A− is)w(s)eis(·) ds‖
‖
∫
R
w(s)eis(·) ds‖

.

To see (ii) note that

‖Γ−1
R
‖ = ‖ΓR‖−1

• =
[

inf
v∈S(R,X)

‖ΓRfv‖
‖fv‖

]−1

= sup
v∈S(R,X)

‖fv‖
‖gv‖

.

For (iii) note that ‖ΓR‖•,Lp(R,X) ≤ ‖Γ‖•,Lp(R+,X). Indeed, let f ∈ Lp(R, X) with
supp f ⊆ R+. If f ∈ Dom(−d/dt + A), then supp ΓRf ⊆ R+ and ‖ΓRf‖Lp(R,X) =
‖Γf‖Lp(R+,X). To see that ‖ΓR‖• ≥ ‖Γ‖• , let ε > 0 and choose f ∈ Dom(−d/dt+A)
with compact support such that ‖f‖Lp(R,X) = 1 and ‖ΓR‖• ≥ ‖ΓRf‖− ε. Now choose
τ ∈ R such that fτ (s) := f(s − τ), s ∈ R, defines a function, fτ ∈ Lp(R, X), with
supp fτ ⊆ R+. Let f̄τ denote the element of Lp(R+, X) which coincides with fτ on
R+. Then ‖fτ‖ = ‖f̄τ‖ and Γf̄τ = −d/dt f(· − τ) + Af(· − τ) = (ΓRf)τ . Therefore,
‖ΓR‖• ≥ ‖ΓRf‖ − ε = ‖(ΓRf)τ‖ − ε = ‖ΓRf̄τ‖ − ε ≥ ‖Γ‖• − ε.

Proposition 3.10. The set GU = {gu : u ∈ S(R, U)} is dense in Lp(R, U). If
u ∈ S(R, U) and B ∈ L(U,X) then Bu ∈ S(R, X) and ΓRfBu = Bgu.

Proof. The first statement is clear, as in Proposition 3.8. The second follows from
the properties of Schwartz functions, and from the calculation:

ΓRfBu = g
Bu

(τ) =
1

2π

∫
R

Bu(s)eisτ ds = B
1

2π

∫
R

u(s)eisτ ds.
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Recall, see Remarks 1.4 and Theorem 2.2, that {etA}t≥0 is hyperbolic (resp.,
stable) if and only if ΓR (resp., Γ) is invertible on Lp(R, X) (resp., Lp(R+, X)).

Theorem 3.11. If ΓR is invertible on Lp(R, X), then

‖CΓ−1
R
B‖ = sup

u∈S(R,U)

‖
∫
R
C(A− is)−1Bu(s)eis(·) ds‖Lp(R,Y )

‖
∫
R
u(s)eis(·) ds‖Lp(R,U)

.(3.18)

If Γ is invertible on Lp(R+, X), then the norm of L = CΓ−1B, as an operator from
Lp(R+, U) to Lp(R+, Y ), is given by the above formula:

‖L‖ = ‖CΓ−1
R
B‖.(3.19)

If, in addition, U and Y are Hilbert spaces and p = 2, then

‖L‖ = sup
s∈R
‖C(A− is)−1B‖L(U,Y ).(3.20)

Proof. For u ∈ S(R, U), consider functions fBu and gu. Proposition 3.10 gives
fBu = Γ−1

R
Bgu and

‖CΓ−1
R
B‖ = sup

gu∈GU

‖CΓ−1
R
Bgu‖Lp(R,Y )

‖gu‖Lp(R,U)
= sup
gu∈GU

‖CfBu‖
‖gu‖

= sup
u∈S(R,U)

‖
∫
R
C(A− is)−1Bu(s)eis(·) ds‖Lp(R,Y )

‖
∫
R
u(s)eis(·) ds‖Lp(R,U)

,

which proves (3.18).
Now, if Γ is invertible on Lp(R+, X), then {etA}t≥0 is exponentially stable by

Corollary 2.6. Hence, ΓR is invertible on Lp(R, X). Moreover, for the case of the
stable semigroup {etA}t≥0, the formula for Γ−1

R
(see, e.g., [24]) takes the form

(Γ−1
R
f)(t) =

∫ ∞
0

esAf(t− s) ds =
∫ t

−∞
e(t−s)Af(s) ds.

If supp f ⊆ (0,∞), then

(Γ−1
R
f)(t) =

∫ t

−∞
e(t−s)Af(s) ds =

∫ t

0

e(t−s)Af(s) ds.(3.21)

For a function h ∈ Lp(R+, X), define an extension h̃ ∈ Lp(R, X) by h̃(t) = h(t) for
t ≥ 0 and h̃(t) = 0 for t < 0. Then (3.21) shows that Γ−1

R
h̃ = (Γ−1h)∼. In particular,

for u ∈ Lp(R+, U), L̃u = ˜CΓ−1Bu = CΓ−1
R
Bũ. Therefore,

‖Lu‖Lp(R+,Y ) = ‖L̃u‖Lp(R,Y ) = ‖CΓ−1
R
Bũ‖Lp(R,Y )

≤ ‖CΓ−1
R
B‖ · ‖ũ‖Lp(R,U) = ‖CΓ−1

R
B‖ · ‖u‖Lp(R+,U).

This shows that ‖L‖ ≤ ‖CΓ−1
R
B‖.

To prove that equality holds in (3.19), let ε > 0 and choose u ∈ Lp(R, U), ‖u‖ = 1,
such that ‖CΓ−1

R
Bu‖Lp(R,Y ) ≥ ‖CΓ−1

R
B‖ − ε. Without loss of generality, u may be

assumed to have compact support. Now choose r such that suppu(· − r) ⊆ (0,∞)
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and set w(·) := u(· − r). Then w ∈ Lp(R, U) with suppw ⊆ (0,∞). Let w̄ denote the
element of Lp(R+, U) that coincides with w on R+. As in (3.21) we have

CΓ−1
R
Bw(t) = C

∫ t

0

e(t−s)ABw(s) ds = C

∫ t

−∞
e(t−s)ABw(s) ds.

Since ‖w̄‖Lp(R+,U) = ‖w‖Lp(R,U) = ‖u‖Lp(R,U) = 1, it follows that

‖L‖ ≥ ‖Lw̄‖Lp(R+,Y ) = ‖L̃w̄‖Lp(R,Y )

= ‖L ˜̄w‖Lp(R,Y ) = ‖CΓ−1
R
Bw‖Lp(R,Y )

= ‖C
∫ ·
−∞

e(·−τ)ABu(τ) dτ‖Lp(R,Y )

= ‖CΓ−1
R
Bu‖Lp(R,Y ) ≥ ‖CΓ−1

R
B‖ − ε.

This confirms (3.19). Parseval’s formula and (3.7) give (3.20).
If {etA}t≥0 is exponentially stable then the inequalities in (3.7) give lower and

upper bounds on the stability radius in terms of L and C(A − is)−1B, respectively.
The previous theorem shows that ‖L‖ can be explicitly expressed in terms of an
integral involving C(A − is)−1B. We conclude by observing that a lower bound for
the constant stability radius can be expressed by a similar formula involving a sum.
For this, let ξ ∈ [0, 1] and set

Sξ := sup
{uk}∈Λ

‖
∑
k C(A− iξ − ik)−1Buke

ik(·)‖Lp([0,2π],Y )

‖
∑
k uke

ik(·)‖Lp([0,2π],U)

.

We note that Sξ is computed as in equation (3.11) with A replaced by Aξ = A− iξ.
Corollary 3.12. Let {etA}t≥0 be an exponentially stable semigroup generated

by A. Then

1
supξ∈[0,1] Sξ

≤ rcstab({etA}, B,C) ≤ 1
sups∈R ‖C(A− is)−1B‖

.

Proof. Fix ξ ∈ [0, 1], and let Γper,ξ denote the generator on Lp([0, 2π], X) of the
evolution semigroup induced by {etAξ}t≥0. By Theorem 3.3, ‖CΓ−1

per,ξB‖ = Sξ, and so
by Theorem 3.4,

1
Sξ
≤ rc1stab(e2πAξ , B,C) ≤ 1

supk∈Z ‖C(Aξ − ik)−1B‖
.

By Proposition 3.6, taking the infimum over ξ ∈ [0, 1] gives

1
supξ∈[0,1] Sξ

≤ inf
ξ∈[0,1]

rc1stab(e
2πAξ , B, C) = rcstab({etA}, B,C)

≤ inf
ξ∈[0,1]

1
supk∈Z ‖C(Aξ − ik)−1B‖

=
1

sups∈R ‖C(A− is)−1B‖
.
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3.5. Two counterexamples. In contrast to the Hilbert space setting, the fol-
lowing Banach space examples show that either inequality in (3.7) may be strict. We
start with the example where the second inequality in (3.7) is strict.

Example 3.13. An example due to W. Arendt (see, e.g., [29], Example 1.4.5)
exhibits a (positive) strongly continuous semigroup {etA}t≥0 on a Banach space X
with the property that s0(A) < ω0(A) < 0 for the abscissa of uniform boundedness of
the resolvent and the growth bound. Now, for α such that 0 ≤ α ≤ −ω0(A), consider
a rescaled semigroup generated by A + α, and denote by ΓA+α the generator of the
induced evolution semigroup on Lp(R+, X). The following relationships hold:

for 0 ≤ α < −ω0(A), s0(A+ α) = s0(A) + α < ω0(A) + α = ω0(A+ α) < 0;

for α0 := −ω0(A), s0(A+ α0) < ω0(A+ α0) = 0.

This says that s0(A+ α) < 0 for all α ∈ [0, α0] and hence

M := sup
α∈[0,α0]

sup
s∈R
‖(A+ α− is)−1‖ <∞.

Now note (see Corollary 2.6) that ω0(A + α) < 0 if and only if ‖Γ−1
A+α‖ < ∞. Since

ω0(A + α) → 0 as α → α0, we conclude that ‖Γ−1
A+α‖ → ∞ as α → α0. Since

α 7→ ‖Γ−1
A+α‖ is a continuous function of α on [0, α0), there exists α1 ∈ [0, α0) such

that ‖Γ−1
A+α1

‖ > M , and so the following inequality is strict:

1
‖Γ−1

A+α1
‖
<

1
sups∈R ‖(A+ α1 − is)−1‖

.

Also, we claim that there exists α2 ∈ [0, α0) such that the following inequality is
strict:

rcstab({et(A+α2)}, I, I) <
1

sups∈R ‖(A+ α2 − is)−1‖
.

To see this, let us suppose that for each α ∈ [0, α0) one has rcstab({et(A+α)}, I, I) ≥
1/(2M). Again, using that ω0(A + α) → 0 as α → α0, find α ∈ [0, α0) such that
|ω0(A + α)| < 1/(2M). Let ∆ = ω0(A + α)I. Since ‖∆‖ = |ω0(A + α)|, by the
definition of stability radius one has:

0 > ω0(A+ α+ ∆) = ω0(A+ α)− ω0(A+ α) = 0,

a contradiction. Thus, there exists α2 ∈ [0, α0) such that

rcstab({et(A+α2)}, I, I) ≤ 1
2M

<
1
M
≤ 1

sups∈R ‖(A+ α2 − is)−1‖
,

as claimed. ♦
This example shows that the second inequality in (3.7) can be strict due to the

Banach-space pathologies related to the failure of Gearhart’s Theorem 1.1. Another
example, given below, shows that the first inequality in (3.7) could be strict due to
the lack of Parseval’s formula (see (3.15) in the proof of Theorem 3.4): That is, the
choice of p = 2 in (3.6) is as important as the fact that X in (3.6) is a Hilbert space.
First, we need a formula for the norm of the input-output operator on L1(R+, X).
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Proposition 3.14. Assume {etA}t≥0 is an exponentially stable C0 semigroup
on a Banach space X. The norm of the operator L = Γ−1 on L1(R+, X) is

‖Γ−1‖L(L1(R+,X)) = sup
‖x‖=1

∞∫
0

‖etAx‖ dt.(3.22)

Proof. Recall, see (2.5), that

Γ−1f(t) = −
t∫

0

eτAf(t− τ) dτ, t ∈ R+, f ∈ L1(R+, X)

is the convolution operator. Choose positive δn ∈ L1(R+,R) with ‖δn‖L1 = 1 such
that

‖g ∗ δn − g‖L1(R+,X) → 0 as n→∞ for each g ∈ L1(R+, X).

Fix x ∈ X, ‖x‖ = 1, let f = δnx ∈ L1(R+, X) and note that

Γ−1f(t) = −
t∫

0

eτAx δn(t− τ) dτ = −(g ∗ δn)(t) for g(t) = etAx, t ∈ R+.

This implies “≥” in (3.22). To see “≤”, take f =
∑N
i=1 αixi with αi ∈ L1(R+,R)

having disjoint supports and ‖xi‖ = 1, i = 1, . . . , N . Now ‖f‖L1(R+,X) =
∑
i ‖αi‖L1

and for fi(t) = etAxi one has

Γ−1f(t) = −
t∫

0

∑
i

eτAxiαi(t− τ) dτ = −
∑
i

(fi ∗ αi)(t).

Using Young’s inequality,

‖Γ−1f‖L1(R+,X) ≤
∑
i

‖fi ∗ αi‖L1(R+,X)

≤
∑
i

‖fi‖L1(R+,X)‖αi‖L1 ≤ sup
‖x‖=1

∞∫
0

‖etAx‖ dt
∑
i

‖αi‖L1 .

Example 3.15. Take X = C
2 with the `1 norm. Let

A =
(
−1 1
−1 −1

)
so that etA =

(
e−t cos(t) e−t sin(t)
−e−t sin(t) e−t cos(t)

)
,

and

(A− is)−1 =
1

(1 + is)2 + 1

(
−1− is −1

1 −1− is

)
.

Since the extreme points of X are eiθe1 and eiθe2 (θ ∈ R), where e1 and e2 are the
unit vectors of C2, we see that

‖(A− is)−1‖ =
|1 + is|+ 1
|(1 + is)2 + 1|

.
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It may be numerically established that

sup
s∈R
‖(A− isI)−1‖ ≈ 1.087494476.

By Corollary 3.7, the reciprocal to the last expression is equal to rcstab({etA}, I, I).
On the other hand, using Proposition 3.14,

‖L‖ = ‖Γ−1
A ‖ = sup

‖x‖=1

∫ ∞
0

‖etAx‖ dt

=
∫ ∞

0

|e−t cos(t)|+ |e−t sin(t)| dt ≈ 1.262434309.

Therefore, the first inequality in (3.7) may be strict. ♦
The following example shows that the norm of the input-output operator depends

on p.
Example 3.16. Let

A =
(

9/2 −5/2
25/2 −13/2

)
,

acting on C2 with the Euclidean norm. Thus

etA = e−t
(

cos t+ (11/2) sin t −(5/2) sin t
(25/2) sin t cos t− (11/2) sin t

)
.

Then

‖Γ−1‖L1→L1 ≥
∫ ∞

0

‖etAe1‖ dt ≈ 7.748310791,

whereas

‖Γ−1‖L2→L2 = sup
s∈R
‖(A− is)−1‖ ≈ 2.732492852.

♦

4. Internal and External Stability. Work aimed at properties of stability and
robustness of linear time-invariant systems is often based on transform techniques.
More specifically, if the transfer function H(λ) = C(A−λ)−1B is a bounded analytic
function of λ in the right half-plane C+ = {λ ∈ C : Re λ > 0}, then the autonomous
system (3.4) is said to be externally stable. This property is often used to deduce
internal stability of the system, i.e., the uniform exponential stability of the nominal
system ẋ = Ax. The relationship between internal and external stability has been
studied extensively; see, e.g., [2, 8, 7, 20, 25, 39, 40] and the references therein. In
this section we examine the extent to which these techniques apply to Banach-space
settings and time-varying systems. For this, input-output stability of the system (3.3)
will refer to the property that the input-output operator L is bounded from Lp(R+, U)
to Lp(R+, Y ). If internal stability is assumed initially, then the inequalities in (3.7)
exhibit a relationship between these concepts of stability. The next two theorems look
at these relationships more closely and show, in particular, when internal stability may
be deduced from one of the “external” stability conditions. Therefore, throughout
this section {U(t, τ)}t≥τ will denote a strongly continuous exponentially bounded
evolution family that is not assumed to be exponentially stable.
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4.1. The nonautonomous case. In this subsection we give a very short proof
of the fact that for general nonautonomous systems on Banach spaces, internal sta-
bility is equivalent to stabilizability, detectability and input-output stability. Before
proceeding, it is worth reviewing some properties of time-invariant systems. For
this, let {etA}t≥0 be a strongly continuous semigroup generated by A on X, and let
H∞+ (L(X)) denote the space of operator-valued functions G : C → L(X) which are
analytic on C+ and supλ∈C+

‖G(λ)‖ < ∞. If X is a Hilbert space, it is well known
that {etA}t≥0 is exponentially stable if and only if λ 7→ (λ − A)−1 is an element of
H∞+ (L(X)); see, e.g., [10], Theorem 5.1.5. This is a consequence of the fact that when
X is a Hilbert space, s0(A) = ω0(etA) (see [29] or Theorem 1.1). If X is a Banach
space, then strict inequality s0(A) < ω0(etA) can hold, and so exponential stability
is no longer determined by the operator G(λ) = (λ−A)−1. Extending these ideas to
address systems (3.4), one considers H(λ) = C(λ−A)−1B: it can be shown that if U
and Y are Hilbert spaces, then (3.4) is internally stable if and only if it is stabilizable,
detectable and externally stable (i.e., H(·) ∈ H∞+ (L(U, Y ))). See R. Rebarber [39] for
a general result of this type. It should be pointed out that this work of Rebarber and
others more recently allows for a certain degree of unboundedness of the operators
B and C. Such “regular” systems (see [44]), and their time-varying generalizations,
might be addressed by combining the techniques of the present paper (including the
characterization of generation of evolution semigroups as found in [36]) along and
with those of [17] and [19]. This will not be done here.

If one allows for Banach spaces, the conditions of stabilizability and detectability
are not sufficient to ensure that external stability implies internal stability. Indeed,
let A generate a semigroup for which s0(A) < ω0(etA) = 0 (see Example 3.13). Then
the system (3.4) with B = I and C = I is trivially stabilizable and detectable and
externally stable. But since ω0(etA) = 0, it is not internally stable.

Since the above italicized statement concerning external stability fails for Banach-
space systems (3.4) and does not apply to time-varying systems (3.3), we aim to prove
the following extension of this.

Theorem 4.1. The system (3.3) is internally stable if and only if it is stabilizable,
detectable and input-output stable.
This theorem appears as part of Theorem 4.3 below. A version of it for finite-
dimensional time-varying systems was proven by B. D. O. Anderson in [2]. The fact
that Theorem 4.1 actually extends the Hilbert-space statement above follows from the
fact that the Banach-space inequality supλ∈C+

‖H(λ)‖ ≤ ‖L‖ (see [45]) which relates
the operators that define external and input-output stability is actually an equality
for Hilbert-space systems (see also [44]).

In Theorems 4.1 and 4.3, below, the following definitions are used.
Definition 4.2. The nonautonomous system (3.3) is said to be
(a) stabilizable if there exists F (·) ∈ L∞(R+,Ls(X,U)) and a corresponding ex-

ponentially stable evolution family {UBF (t, τ)}t≥τ such that, for t ≥ s and
x ∈ X, one has:

UBF (t, s)x = U(t, s)x+
∫ t

s

U(t, τ)B(τ)F (τ)UBF (τ, s)x dτ ;(4.1)

(b) detectable if there exists K(·) ∈ L∞(R+,Ls(Y,X)) and a corresponding ex-
ponentially stable evolution family {UKC(t, τ)}t≥τ such that, for t ≥ s and
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x ∈ X, one has:

UKC(t, s)x = U(t, s)x+
∫ t

s

UKC(t, τ)K(τ)C(τ)U(τ, s)x dτ.(4.2)

An autonomous control system is called stabilizable if there is an operator F ∈
L(X,U) such that A+BF generates a uniformly exponentially stable semigroup; that
is, ω0(A+BF ) < 0. Such a system is detectable if there is an operator K ∈ L(Y,X)
such that A+KC generates a uniformly exponentially stable semigroup.

Using Theorem 2.5 to characterize exponential stability in terms of the operator
G as in (2.6) makes the proof of the following theorem a straightforward manipulation
of the appropriate operators.

Theorem 4.3. The following are equivalent for a strongly continuous exponen-
tially bounded evolution family of operators U = {U(t, τ)}t≥τ on a Banach space X.

(i) U is exponentially stable on X;
(ii) G is a bounded operator on Lp(R+, X);

(iii) system (3.3) is stabilizable and GB is a bounded operator from Lp(R+, U) to
Lp(R+, X);

(iv) system (3.3) is detectable and CG is a bounded operator from Lp(R+, X) to
Lp(R+, Y );

(v) system (3.3) is stabilizable and detectable and L = CGB is a bounded operator
from Lp(R+, U) to Lp(R+, Y ).

Proof. The equivalence of (i) and (ii) is the equivalence of (i) and (ii) in Theo-
rem 2.5.

To see that (ii) implies (iii), (iv), and (v), note that B and C are bounded, and
thus L is bounded when G is bounded. So when (ii) holds, the exponential stability
of U , together with boundedness of B(·), C(·), F (·) and K(·), assure the existence of
the evolution families {UBF (t, τ)}t≥τ and {UKC(t, τ)}t≥τ as solutions of the integral
equations in Definition 4.2; thereby showing that (iii), (iv), and (v) hold.

To see that (iii)⇒ (ii), first note that the assumption of stabilizability assures the
existence of an exponentially stable evolution family UBF = {UBF (t, τ)}t≥τ satisfying
equation (4.1) for some F (·) ∈ L∞(R+,Ls(X,U)). Given this exponentially stable
family, we define the operator GBF by

GBF f(s) :=
∫ s

0

UBF (s, τ)f(τ) dτ =
∫ ∞

0

(EτBF f)(s) dτ(4.3)

where {EτBF f}t≥0 is the semigroup induced by the evolution family UBF as described
in equation (2.1). GBF is a bounded operator on Lp(R+, X) by the equivalence of (i)
and (ii).

For f(·) ∈ Lp(R+, X) and s ∈ R+, take x = f(s) in equation (4.1). Then, let
ξ = τ − s, to obtain

UBF (t, s)f(s) = U(t, s)f(s) +
∫ t−s

0

U(t, ξ + s)B(ξ + s)F (ξ + s)UBF (ξ + s, s)f(s) dξ.

From this equation and from the definition of the semigroups {Et}t≥0, and {EtBF }t≥0

we obtain

(Et−sBF f)(t) = (Et−sf)(t) +
∫ t−s

0

(Et−s−ξBFEξBF f)(t) dξ
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and hence for 0 ≤ r and 0 ≤ σ that

(ErBF f)(σ) = (Erf)(σ) +
∫ r

0

(Er−ξBFEξBF f)(σ) dξ.

Integrate from 0 to ∞ to obtain

(GBF f)(σ) = (Gf)(σ) +
∫ ∞

0

∫ r

0

(Er−ξBFEξBF f)(σ) dξ dr.

Let r = ζ + η and ξ = η to obtain

(GBF f)(σ) = (Gf)(σ) +
∫ ∞

0

∫ ∞
0

(EζBFEηBF f)(σ) dη dζ

= (Gf)(σ) + (GBFGBF f)(σ).
(4.4)

That G is bounded now follows from equation (4.4), the boundedness of GB, and the
boundedness of GBF and F .

To see that (iv) ⇒ (ii), first note that the assumption of detectability assures the
existence of an exponentially stable evolution family UKC = {UKC(t, τ)}t≥τ satisfying
equation (4.2) for some K(·) ∈ L∞(R+,Ls(Y,X)). Given this exponentially stable
family, the operator GKC , defined in a manner analogous to GBF in equation (4.3),
is a bounded operator on Lp(R+, X). A derivation beginning with equation (4.2),
and similar to that which gave equation (4.4), now gives GKC = G + GKCKCG.
This equation, together with the assumed boundedness of GKC , K, and CG, gives the
boundedness of G.

Finally, to see that (v) ⇒ (ii), again note that the assumption of detectabil-
ity yields an exponentially stable evolution family UKC and an associated bounded
operator GKC . For u(·) ∈ Lp(R+, U), and s ∈ R+ take x = B(s)u(s) in equa-
tion (4.2). A calculation similar to that which gave equation (4.4) now gives GKCB =
GB +GKCKCGB. The assumed boundedness of L = CGB, K, and GKC , now yields
the boundedness of GB. The boundedness of GB together with the assumption of
stabilizability implies that G is bounded by the equivalence of (iii) and (ii).

4.2. The autonomous case. The main result of this subsection is Theorem 4.4
which builds on Theorem 3.11 and parallels Theorem 4.3 for autonomous systems of
the form (3.4). The main point is to provide explicit conditions, in terms of the
operators A, B and C, which imply internal stability.

Let Aα := A− αI denote the generator of the rescaled semigroup {e−αtetA}t≥0.
Theorem 4.4. Let {etA}t≥0 be a strongly continuous semigroup on a Banach

space X generated by A. Let U and Y be Banach spaces and assume B ∈ L(U,X)
and C ∈ L(X,Y ). Then the following are equivalent.

(i) {etA}t≥0 is exponentially stable;

(ii) G is a bounded operator on Lp(R+, X);

(iii) σ(A) ∩ C+ = ∅ and sup
v∈S(R,X)

‖
∫
R
(Aα − is)−1v(s)eis(·) ds‖Lp(R,X)

‖
∫
R
v(s)eis(·) ds‖Lp(R,X)

<∞

for all α ≥ 0;

(iv) σ(A) ∩ C+ = ∅, sup
u∈S(R,U)

‖
∫
R
(Aα − is)−1Bu(s)eis(·) ds‖Lp(R,X)

‖
∫
R
u(s)eis(·) ds‖Lp(R,U)

<∞
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for all α ≥ 0, and (3.4) is stabilizable;

(v) σ(A) ∩ C+ = ∅, sup
v∈S(R,X)

‖
∫
R
C(Aα − is)−1v(s)eis(·) ds‖Lp(R,Y )

‖
∫
R
v(s)eis(·) ds‖Lp(R,X)

<∞

for all α ≥ 0, and (3.4) is detectable;

(vi) σ(A) ∩ C+ = ∅, sup
u∈S(R,U)

‖
∫
R
C(Aα − is)−1Bu(s)eis(·) ds‖Lp(R,Y )

‖
∫
R
u(s)eis(·) ds‖Lp(R,U)

<∞

for all α ≥ 0, and (3.4) is both stabilizable and detectable.
Moreover, if {etA}t≥0 is exponentially stable, then the norm of the input-output oper-
ator, L = CGB, is equal to

sup
u∈S(R,U)

‖
∫
R
C(A− is)−1Bu(s)eis(·) ds‖Lp(R,Y )

‖
∫
R
u(s)eis(·) ds‖Lp(R,U)

.

Proof. First note the equivalence of statements (i) and (ii) follows from Re-
marks 2.3. Also, the implication (i)⇒(vi), as well as the last statement of the theo-
rem, follow from Theorem 3.11. The exponential stability of {etA}t≥0 is equivalent to
the invertibility of ΓR (Corollary 2.6), and so (iii) follows from (i) by Proposition 3.9.

To see that (iii) implies (i), begin by setting α = 0. We wish to use properties
of F as in Proposition 3.8. We begin by observing that if the expression in (iii) is
finite, then sups∈R ‖(A − is)−1‖ < ∞. Indeed, if this were not the case, then there
would exist sn ∈ R and xn ∈ Dom(A) with ‖xn‖ = 1 such that ‖(A− isn)xn‖ → 0 as
n→∞. Choose functions βn ∈ S(R) with the property that

lim
n→∞

‖
∫
R
βn(s)(isn − is)eis(·) ds‖Lp(R)

‖
∫
R
βn(s)eis(·) ds‖Lp(R)

= 0.(4.5)

Note: to construct such a sequence of functions βn, one takes, without loss of general-
ity, sn = 0 in (4.5) and chooses a “bump” function β0(s) where β0(0) = 1 and β0 has
support in (−1, 1). Then set βn(s) = nβ0(ns). If ˇ denotes the inverse Fourier trans-
form, then β̌n(τ) = β̌0(τ/n). Also, for αn(s) = sβn(s), one has α̌n(τ) = 1

n α̌0(τ/n),
and so

‖
∫
R
βn(s)seis· ds‖pLp(R)

‖
∫
R
βn(s)eis· ds‖pLp(R)

=
‖α̌n‖p

‖β̌n‖p
=

(
1
n

)p ‖α̌0‖p

‖β̌0‖p
→ 0, as n→∞.

Now, setting vn(s) := βn(s)(A − is)xn gives a function vn in S(R, X) with the
properties that (A− is)−1vn(s) = βn(s)xn. Thus,

‖
∫
R
(A− is)−1vn(s)eis(·) ds‖
‖
∫
R
vn(s)eis(·) ds‖

=
‖
∫
R
βn(s)xneis(·) ds‖

‖
∫
R
βn(s)(A− is)xneis(·) ds‖

=
‖
∫
R
βn(s)xneis(·) ds‖

‖
∫
R
βn(s)(A− isn)xneis(·) ds+ βn(s)(isn − is)xneis(·) ds‖

≥
‖
∫
R
βn(s)xneis(·) ds‖

‖(A− isn)xn‖ ‖
∫
R
βn(s)eis(·) ds‖+ ‖

∫
R
βn(s)(isn − is)xneis(·) ds‖

=

(
‖(A− isn)xn‖+

‖
∫
R
βn(s)(isn − is)eis(·) ds‖
‖
∫
R
βn(s)eis(·) ds‖

)−1

.



34 S. CLARK, Y. LATUSHKIN, S. MONTGOMERY-SMITH, AND T. RANDOLPH

By the choice of sn, xn and βn, this last expression goes to∞ as n→∞, contradicting
(iii). Hence if the expression in (iii) is finite for α = 0, then sups∈R ‖(A− is)−1‖ <∞.

Now we may apply Proposition 3.8 (ii) and Proposition 3.9, to obtain

‖ΓR‖• = inf
v∈S(R,X)

‖ΓRfv‖
‖fv‖

= inf
v∈S(R,X)

‖gv‖
‖fv‖

=

(
sup

v∈S(R,X)

‖fv‖
‖gv‖

)−1

> 0.

This shows that 0 /∈ σap(ΓR) and so, by [22], it follows that σap(etA)∩T = ∅. On the
other hand, since σ(A)∩ iR = ∅, it follows from the spectral mapping theorem for the
residual spectrum, σr(etA), that

σ(etA) ∩ T =
[
σap(etA) ∪ σr(etA)

]
∩ T = ∅.

The same argument holds for any α ≥ 0. As a result, {etAα}t≥0 is hyperbolic for each
α ≥ 0, and thus {etA}t≥0 is exponentially stable.

So far it has been shown that the statements (i)–(iii) are equivalent, and that
statement (i) implies (vi). By showing that (vi)⇒(iv)⇒(iii) and (vi)⇒(v)⇒(iii), we
complete the proof.

To see that (vi) implies (iv), begin by setting α = 0. Since (3.4) is detectable, there
exists K ∈ L(Y,X) such that A + KC generates an exponentially stable semigroup.
By the implication (i)⇒(iii) for the semigroup {et(A+KC)}, it follows that

M1 := sup
v∈S(R,X)

‖
∫
R
(A+KC − is)−1v(s)eis(·) ds‖

‖
∫
R
v(s)eis(·) ds‖

is finite. So,

sup
u∈S(R,U)

‖
∫
R
(A+KC − is)−1Bu(s)eis(·) ds‖

‖
∫
R
u(s)eis(·) ds‖

(4.6)

= sup
u∈S(R,U)

‖
∫
R
(A+KC − is)−1Bu(s)eis(·) ds‖

‖
∫
R
Bu(s)eis(·) ds‖

·
‖B
∫
R
u(s)eis(·) ds‖

‖
∫
R
u(s)eis(·) ds‖

≤M1‖B‖.

By hypothesis in (vi),

M2 := sup
u∈S(R,U)

‖
∫
R
C(A− is)−1Bu(s)eis(·) ds‖
‖
∫
R
u(s)eis(·) ds‖

is finite. For u ∈ S(R, U), let w(s) = KC(A− is)−1Bu(s), s ∈ R. Then,

‖
∫
R
(A+KC − is)−1KC(A− is)−1Bu(s)eis(·) ds‖

‖
∫
R
u(s)eis(·) ds‖

(4.7)

=
‖
∫
R
(A+KC − is)−1w(s)eis(·) ds‖

‖
∫
R
w(s)eis(·) ds‖

·
‖K

∫
R
C(A− is)−1Bu(s)eis(·) ds‖
‖
∫
R
u(s)eis(·) ds‖

≤M1‖K‖M2.
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Finally, since

(A− is)−1B = (A+KC − is)−1B

+ (A+KC − is)−1KC(A− is)−1B,

it follows from (4.6) and (4.7) that

sup
u∈S(R,U)

‖
∫
R
(A− is)−1Bu(s)eis(·) ds‖
‖
∫
R
u(s)eis(·) ds‖

≤M1‖B‖+M1‖K‖M2.

This argument holds for all α ≥ 0, so the implication (vi)⇒(iv) follows.
To see that (iv) implies (iii) we again argue only in the case α = 0. Since (3.4) is

stabilizable, there exists F ∈ B(X,U) such that A + BF generates an exponentially
stable semigroup. By the implication (i)⇒(iii) for the semigroup {et(A+BF )}, it follows
that

M3 := sup
v∈S(R,X)

‖
∫
R
(A+BF − is)−1v(s)eis(·) ds‖
‖
∫
R
v(s)eis(·) ds‖

is finite. By hypotheses in (iv),

M4 := sup
u∈S(R,U)

‖
∫
R
(A− is)−1Bu(s)eis(·) ds‖
‖
∫
R
u(s)eis(·) ds‖

is finite. For v ∈ S(R, X), set w(s) = F (A+BF − is)−1v(s), s ∈ R. Then,

sup
v∈S(R,X)

‖
∫
R
(A− is)−1BF (A+BF − is)−1v(s)eis(·) ds‖

‖
∫
R
v(s)eis(·) ds‖

(4.8)

=
‖
∫
R
(A− is)−1Bw(s)eis(·) ds‖
‖
∫
R
w(s)eis(·) ds‖

·
‖F
∫
R
(A+BF − is)−1v(s)eis(·) ds‖
‖
∫
R
v(s)eis(·) ds‖

≤M4‖F‖M3.

Since

(A− is)−1 = (A+BF − is)−1 + (A− is)−1BF (A+BF − is)−1,

it follows from (4.8) that

sup
v∈S(R,X)

‖
∫
R
(A− is)−1v(s)eis(·) ds‖
‖
∫
R
v(s)eis(·) ds‖

≤M3 +M4‖F‖M3.

Thus (iii) follows from (iv). Similar arguments show that (vi)⇒(v) and (v)⇒(iii).
From the equivalence of statements (i) and (iii), it follows that the growth bound of
a semigroup on a Banach space is given by

ω0(etA) = inf

{
α ∈ R : sup

v∈S(R,X)

‖
∫
R
(Aα − is)−1v(s)eis(·) ds‖
‖
∫
R
v(s)eis(·) ds‖

<∞

}
.
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This is a natural generalization of the formula for the growth bound for a semigroup
on a Hilbert space as provided by Gearhart’s Theorem, see [18, 27, 29, 33] and cf.
Theorem 1.1:

ω0(etA) = s0(A) = inf

{
α ∈ R : sup

Reλ≥α
‖(A− λ)−1‖ <∞

}
.

Theorem 4.5. Let {etA}t≥0 be a strongly continuous semigroup on a Banach
space X with the property that s0(A) = ω0(etA). Assume (3.4) is stabilizable and
detectable. If C+ ⊂ ρ(A) and M := sups∈R ‖C(A − is)−1B‖ < ∞, then {etA}t≥0 is
exponentially stable.

Proof. Choose operators F ∈ L(X,U) and K ∈ L(Y,X) such that the semigroups
generated by A + BF and A + KC are exponentially stable. Then s0(A + BF ) < 0
and s0(A+KC) < 0, and so

M1 := sup
s∈R
‖(A+BF − is)−1‖, and M2 := sup

s∈R
‖(A+KC − is)−1‖.

are both finite. Since

(A− is)−1B = (A+KC − is)−1B + (A+KC − is)−1KC(A− is)−1B,

it follows that

M3 := sup
s∈R
‖(A− is)−1B‖ ≤M2‖B‖+M2‖K‖M.

Also,

(A− is)−1 = (A+BF − is)−1 + (A− is)−1BF (A+BF − is)−1,

and so

sup
s∈R
‖(A− is)−1‖ ≤M1 +M3‖F‖M1.

Therefore, ω0(etA) = s0(A) < 0.
The following result, based on [21], describes a particular situation in which

s0(A) = ω0(etA).
Corollary 4.6. Assume that for the generator A of a strongly continuous semi-

group {etA}t≥0 on a Banach space X there exists an ω > ω0(etA) such that

∞∫
−∞

‖(ω + iτ −A)−1x‖2X dτ <∞ for all x ∈ X,(4.9)

and
∞∫
−∞

‖(ω + iτ −A∗)−1x∗‖2X∗ dτ <∞ for all x∗ ∈ X∗,(4.10)

where X∗ is the adjoint space. Then system (3.4) is internally stable if and only if it
is stabilizable, detectable and externally stable.

Proof. According to [21] (see also [29, Corollary 4.6.12]), conditions (4.9)–(4.10)
imply s0(A) = ω0(etA). Now Theorem 4.5 gives the result.
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