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ABSTRACT

Static equations for thin inextensible elastic rods etasticaas they are sometimes called, have been studied
since before the time of Euler. In this paper, we examine lsawddel the dynamic behavior of elastica. We present
a fairly high speed, robust numerical scheme that uses (paxes discretization that uses cubic splines, and (i)
a time discretization that preserves a discrete versiorhefamiltonian. A good choice of numerical scheme is
important, because these equations are \&iff, that is, most explicit numerical schemes will become unista
very quickly. The authors conducted this research antiaigedescribing the dynamic Kirchhoff problem, that is,
the behavior of general springs that have natural curvatared for which the equations take into account torsion
of the rod.

1 Introduction

The purpose of this research is to find an efficient and rohwstemical scheme that simulates the dynamic behavior of
springs, including springs that are not necessarily hielféar our purposes, we will define a spring to be a rod made but o
an infinitesimally thin piece of wire, which has a naturahaiure, is inextensible, and thereafter acts in an elaasicibn,
possibly with damping, but with no plasticity. The genehadry of elastic rods is referred to as the Kirchhoff prohlanmd
is described in the classic work of Love [20].

In this paper, we make a modest beginning by modeling therdigsaof elastica By this we mean a spring with no
natural curvature, and in which we do not consider the efiétbrsion. We also assume that the properties of the wire are
uniform along the length of the wire. In [22], we plan to dissuhe general shaped spring.

The literature on steady state solutions for elastica isshagd we refer the reader to Levian [18] and Love [20].
For modeling dynamic behavior, Falk and Xu [10] found a stat#cond order scheme for elastica, and the numerical
scheme presented in their paper has many similarities $optteisent work. Other works on elastica include Caflisch and
Maddocks [5], Coleman and Dill [7], Dichmann, Maddocks areg/®[8], Ito [15, 16], and Maddocks and Dichmann [21].

The more general theory of springs seems to go back to thsicdsvork of Thomson [35]. This theory established
geometric relationships between the various spring paemsiesuch as pitch angle, static load, coil curvature, hadadius
of the spring helix. However Thomson assumed that the spsifgelical with constant pitch and spring radius. A later
paper by Lin and Pisano [19] deals with more general heljmdhgs, allowing the pitch angle and spring radius to varg as
function of arclength.

A very general and impressive framework is given by Pai [34, & which he models highly flexible structures using
finite element analysis. From a numerical point of view, he regcreate our results by setting the extensibility of treetooa



very low value. However since our paper restricts itselfao like structures, we believe that we can obtain faster amiém
robust results.

From reading various conference abstracts, we see that people are working on solving these kinds of problems.
It has been hard for us to survey the complete literature,sanithere may be important works that we have missed. We
mention the book by Antman [1] which gives a mathematicalfyprous account, the Ph.D. thesis of Goss [12] which
described experimental results, and the web page of hisadvan der Heijden [36] which includes many applications of
the study of slender rods.

Most work on elastica is in two dimensions, and since torgamt taken into account, this is natural. However since
we are anticipating including torsion in later works, wefpreed to work in three dimensions. We have to make use of
a Lagrange multiplier arising from keeping the arclengthhef rod constant. This Lagrange multiplier has an intangsti
property in that it satisfies a one-dimensional Sturm-Libeequation. This equation also appears in the theory apsvh
and chains by Preston [26,27] and Thess et al [34].

2 Lagrangians, Hamiltonians, and energy conserving numerical methods

The time discretization method we present in this papersigded to preserve the energy of the system. Many papers
on energy conserving methods for Hamiltonian equatione leeen written, and some of these works are very deep and
difficult [3,6,11,17,23,28-33]. Many of them explicitly alewith the problems we are attempting in this paper.

We believe our approach is simpler for the following reasdatistorically, the notion of representing equations of
motion by Hamiltonians came after it was realized that maqedions of motion came from a principle of least action. Let
us consider the simple case when the kinetic energy is a siquadratic

E = E(V) = 2m|v|? 1)

wherev = x is the velocity in soman-dimensional space, and the potential enetdy= 1V (x) depends only upon the
positionx. Suppose furthermore that the particle is constrainedatp ista submanifold ofm-dimensional space given by
theM constraints

C(x)=0 1<k<M (2)

The Hamiltonian approach is to introduce tme@mentunp = mv, the HamiltoniarH = £(p/m) + 7/(x), and write down
the usual Hamiltonian equations of motion, and see that #miltbnian is conserved as the equations of motion evolve.
However, prior researchers, have found it to be a strugdfeifethey have been successful in many cases) to find eféecti
time discretizing numerical schemes that preserve the ltaman.

The method presented in this paper is to go back to the Lagnamgjuations from which the Hamiltonian equations
were historically derived. This method of creating the diuns of motion is often called Hamilton’s principle. That ive
create the action

t2
SX) :/ (—E+ 9+ C)dt 3)

6]

where
C= Y aC(x) 4)
K=1

is the term involving the Lagrange multipliecs,. Then Hamilton’s principle (also called the principle od$t action) is that
the equation of motion can be found by calculating the statig point of the action. That s, find the vecigisatisfying the
constraints, such that for any infinitesimal perturbabgrof x, we have

3S(X) = S(x +8x) — S(x) = O(|8x|?) (5)
Then it is well known that the resulting equation of motionsserve the Hamiltonian

H(t) = E(X) + V(x) (6)



One of the goals of this paper is to present a time discraizaiumerical method that computes= x(t) for t = nh, and
such that the followingliscretized Hamiltoniais conserved

(@)

Ho= E (Xn+1h— Xn) " V(Xn) +2'V(Xn+1)

Such a scheme which preserves this discretized Hamiltavdaralready presented in [10], and the philosophy behird the
scheme is the same as ours. Their method works in the spastitat’(x) = 3., V(x;). Our method works in the special
case that/(x) andCy(x) are quadratic functions of In future papers (for example, where we solve the more géspring
problem), we will present numerical methods that consdrealiscretized Hamiltonian in a wider class of circumstance

The paper by Simo, Tarmow and Wong [32] discusses the case thbekinetic and potential energies are quadratic
functions. But as they point out, this only gives linear dymes. But it turns out that adding quadratic constraintegiv
extremely interesting non-linear dynamics. For examgie,work on rigid motions by Simo and Wong [30] could have
been done using quadratic constraints (since the conditaira matrix is orthogonal is a quadratic constraint on thé&im
entries).

We believe that this more simple minded approach may have inégsed by many researchers because in the context
of Hamiltonians, the position and momentum are considevdakttwo different, more or less interchangeable, variables
whereas in our Lagrangian approach to the discretized Hammain, position and velocity clearly play very distinctes.

3 TheMathematical Model
We describe the path of the spring by a functior{0,L] — R3

X(8) = [x1(8),%2(s), xa(8)]" (8)
Heresis the arclength along the rod, and hence the functishnecessarily satisfies the constraint equation
X/(9)|2 = %4(8)2 +%(8)2 + ¥5(9)2 = 1 ©)

Here the prime represents differentiation with respechéoarclength. We will represent the derivative with respedtime
by placing a dot over the variable.

We assume that the material from which the rod is construtasdwo parameterg which is the mass per unit length
of the rod, and which is the elasticity of the material from which the rod iadhe. In this paper, these will both be constant
throughout the length of the rod, however removing theseraptions would not greatly complicate the exposition.

The energy of the rod consists of two parts, its kinetic ep&gand its potential energy’, where

L

£~ [ 3pix(s)Pds (10)
L

q/:/o Lg|x"(9)2ds (11)

There is also a possible additional term to the kinetic energ

/OL 1o/%/(s)2ds (12)

whereao is the moment of inertia of the cross section perpendicoléné rod per unit length. Since we assume that the rod
is infinitesimal in thickness, we will set = 0. However this term is non-zero in the two dimensional eignatobtained by
Caflisch and Maddocks [5], and used by Falk and Xu [10]. Sgtiip- 0 would not add any complications.

The constraint is given by

L
C= %/O a(s)x'(s)2ds (13)



wherea(s) is the Lagrange multiplier.
We allow three different boundary conditions for each end:

x(0) andx’(0) are known functions df, or (14)
x(0) is a known function of, and (15)
x'(0) is not a known function of; or
neitherx(0) norx’(0) are known functions of. (16)
and
x(L) andx’(L) are known functions df; or a7)
X(L) is a known function of, and (18)
x'(L) is not a known function of; or
neitherx(L) norx’(L) are known functions of. (29)

When we apply Hamilton’s method, we suppose in the case tlyabfthe conditions (14), (15), (17) or (18) are satisfied,
that the known functions dfare constant. However once the solution to equation (5)uadothe solution is still valid in
the case that the known functionstadre not constant.

Theorem 1. The variation equatio®$ = 0 is solved by the equations

px+ex" — (ax') =0 (20)
with additional boundary conditions
x"(0) = 0if (15); (21)
x"(0) =x"(0) = 0if (16); (22)
x"(L)=0if (18); (23)
x"(L) =x" (L) = 0if (19). (24)
It can be shown that satisfies
a’ — |X//|2cx — _p|)-(/|2 _ 8(4X/W~X”+3|XW|2) (25)
with boundary conditions
a’(0) = px(0) - X'(0) — 3ex”(0) - x"(0) if (14)or (15); (26)
a(0) =0if (16) (27)
a’(L) = pX(L)-X'(L) — 3ex” (L) -x""(L) if (17)or (18); (28)
a(L) =0if (19). (29)

Note that the equation far will have a unique solution if and only if the Sturm-Louilbperator

—B"+ X"|*B (30)
[3’(0) = B’(L) =0if ((14) or (15)) and ((17) or (18))
B(0)=p/(L) = 0if (16) and ((17) or (18)) (31)
B'(0) = B(L) = 0 if ((14) or (15)) and (19)
(L)



doesn’t have zero in its spectrum. This will be the case wihemeondition (16) or (19) hold, or whenever the rod isn't
a straight line (that i” is not identically zero), because in these circumstancesSthrm-Louiville operator is positive
definite. See [2,9].

For example, to see that is unique wherx(0) andx(L) are known functions of and the rod isn't a straight line,
suppose thati; anda; are solutions. Thefd = a1 — a, satisfies

—B"+|X"B=0, P (0)=p(L)=0 (32)

and hence integrating by parts we see

L L
| 1B+ pds= [ “B(-B"+[x"%B)ds=0 (33)
0 0

We have thaP’ = 0, and henc@ is constant. But alsg”p = 0, and hence ik’ (s) # 0 for somes, thenf3 = 0.
Note that ifx(0) andx(L) are known functions df, then it is physically reasonable that equation (25) withtibundary
conditions may not have a unique solution if the rod isnaigfint, because it is possible that the rod is being pulledtapa

Proof of Theorem 1 The variation of the action with respectitas

/’ /" — XX+ &3¢ - X"+ adx - X dsdt
t s=0

= [eéx x} - [x- (sx/’/—ax/)]"

t=tg s=0

(34)

L
+ Ox - (px+ex”" — (ax’)')dsdt

s=0

Setting the variation equal to zero, sineis an arbitrary function of with the exception that it must be zerotat to or
t =t;, we obtain

[aéx x} — [ox- (ax/’/—ax/)]l‘

s=0 (35)
+ 6x-(p5t+£x””—(cxx’)/)ds:0
s=0
We obtain equation (20) becau®qs) is arbitrary on any closed subinterval @ L).
Next, since
X|2=1 (36)
differentiating up to four times with respects$pwe obtain
X-x"=0 (37)
|X//|2 = —x'.x" (38)
X/ . X//// — _3X// . X/// (39)
X"y — 4" ! — 3|X///|2 (40)
and differentiating twice with respect tpwe obtain
ol o2
X x'=—|X]| (41)

Differentiating equation (20) with respect$pwe obtain

"

px' 4+ ex"" —a’x' —2a'x" —ax” =0 (42)



and dot producting both sides withwe obtain equation (25).

Now let us show the boundary conditions fo« 0, the boundary conditions fer= L following by the same argument.
First, dot producting equation (20) By gives (26). Next, if condition (15) holds, then sing0) is arbitrary, it follows that
x"(0) =0.

If condition (16) holds, then botbx(0) anddx’(0) are arbitrary, and hence

x"(0)=0 (43)
ex”'(0) — a(0)x'(0) =0 (44)

Dot producting (44) by’(0), we obtain
a(0) = ex'(0) - x"(0) = —¢g|x"(0)>=0 (45)

Substituting back into (44) gived”(0) = 0, and hence we obtain (22) and (27).

4 TheHamiltonian and Damping Terms
We define the Hamiltonian to be

L
H :/ Ip[x|?+ 3e[x"|ds (46)
0

Itis well known that the Hamiltonian is a conserved quartditthe equations of motion. However we will include a detgile
statement and short proof. This will help us to understanatwdrms we might like to use as the damping terms.

The authors do not know any general theory of how to genehatalamping terms. Our idea is to find terms that
will cause the Hamiltonian to be a non-increasing functibtirne, and such that the energy lost in the Hamiltonian could
reasonably be ascribed to creating thermal energy.

Theorem 2. Suppose that satisfies the variation of the actighis zero along with equatio(®). Suppose further that in
the case that any of the conditio(ist), (15), (17) or (18) are satisfied that the known functions of t are constant. Then
Hamiltonian is conserved, that is

H=0 47

Proof. Dot product both sides of equation (20) withand integrate with respect drom 0 toL, to obtain

0= / (px+ex"" — (ax'))ds

///] L L

e - X"]5 — [eX - X"]5 + [ox - X]§

+/ - %+ e X" + o - X' ds (48)

= [ex- X"l — [eX' - X"]5 + [ax’ - X]§ + H
0
1 2
/o 29 (6t|x/| ) ds

It can be seen that under any of the boundary conditions th&sderms disappear, and also the last integral disappears
because of equation (9).

This suggests that we could introduce damping terms withitve that the new equations should imply< 0 under the
same hypothesis as Theorem 2. Furthermore, any dampinghtertd be such that whenever the rod experiences some kind
of internal change, energy is transformed into thermodyiodimat. An example of such an internal change’ighanging,
but would not be< changing since the latter merely reflects a change of framefefence. (But if the rod is operating in



an atmosphere that is stationary, then one might expectidgnp be caused by changing. We won't consider this last
possibility.)
Thus it seems reasonable that that any damped equatiordshaulyy something like

. L
H = —v/ X" 2 ds (49)
0
wherev is a damping constant. By following the proof of Theorem 2yéf replace equation (20) by

px + EX//// _ VXNN _ (GX/)/ — 0 (50)

with appropriate changes to equations (25), (26) and (28)see that equation (49) is satisfied. Thus, we propose equa-
tion (50) as thelampedversion of the dynamic equation of the elastic rod.

5 The Space Discretization

We approximate the path of the elastica by a cubic spline. Mlespme positive integeM, and set the space mesh size
n =L/N. We define

xj=xnj)  (0<j<N) (51)

suppose thax(s) is a cubic spline passing through these points, that(is), is a piecewise cubic function fom < s <
(j+1)n, and it has a continuous second derivative.

In addition, if the rod satisfies boundary condition (14), wi# choose a spline that is clampedst 0 satisfying the
same boundary condition. Similarly for the boundary candi{17).

If the rod satisfies the boundary condition (15) or (16), tlespired by Theorem 1, the spline will be freesat 0, that
is, the spline will satisfy the boundary conditigfi(0) = 0. (In the case boundary condition (16) is satisfied, we might
tempted to try the additional boundary conditidfy(0) = 0, but since it is a cubic spline it is unreasonable to exgesttd
be satisfied.) Again, similarly for the boundary conditid8) or (19).

We denote the first and second derivatives of the spline

X;=x(nj), x{=x"nj) (0<j<N) (52)

It is well known that these derivatives can be computed usiedollowing matrices (see for example [4]):

[AooAgs O O--- 0 O

n 4nn 0--- O 0

O né4nn-- O 0
A—| O Ondn--- 0 O (53)

0O 0 0O 4n n

| 0 0 0 0- Aun-1 Ann

where

Aoo = 2n, Ag1 = n if condition (14) holds; (54)
Aoo = 1, A1 = 0 if condition (15) or (16) hold; (55)
AnN-1 =N, Ann = 20 if condition (17) holds; (56)

Ann-1 =0, Axn = 1 if condition (18) or (19) hold. (57)



_U0,0 U0,1 0O 0 - 0 0
3 63 0--- 0 0
0 3 -63-- 0 0
u—llo o 3-6.- 0 O (58)
ni{ . C
0O 0 00--- -6 3
| 0 0 0 0 - Uun-1Unn]
where
Uoo = —3,Ug1 = 3 if condition (14) holds; (59)
Uoo = 0, Ug1 = 0 if condition (15) or (16) hold; (60)
Unn-1 = 3, Unn = —3if condition (17) holds; (61)
Un,n—1 = 0, Un N = Oif condition (18) or (19) hold. (62)
(11 0 0--- 0 0
0-11 0--00
) 0 0-11--00
B— — 0O 0 0O-1---00 (63)
n{. . . . . .
000 0---11
|0 0 0 0+ —11]f
[2100--- 0 O]
0210--- 0 O
0021--- 0 O
C:% 0002--- 0 O (64)
0000--- 2 1
0000 —1 -2

From now on we employ an abuse of notation, and altow/ andx” to denote either the functions ¢\ L], or the vectors

X = [X0,X1,. -, XN] (65)
X' = X0, X4, ..., xn) T (66)
X" = [xg, X4, ... x{]T (67)

where which notation we intend should be obvious from theednHere each of the entries of these vectors is itselfeethr
dimensional vectdr We also denote

Z= [2070707"'7072N]T (68)
with
zo = X/(0) if condition (14) holds; (69)
Zo = 0 if condition (15) or (16) hold; (70)
zy = —X/(L) if condition (17) holds; (71)
zy = 0 if condition (18) or (19) hold. (72)

1Some people might argue that a vector of vectors shouldrbaltalled a tensor.



Then

X" = Dox — 6A "1z (73)
X' =Bx— 3Cx" =D1x+3CA 'z (74)
where
D, =2A"1U (75)
D;=B-CA U (76)

Note that these matrices can be written in sparse form. liicpéar, A should be represented as its LU factorization, because
A~1is not sparse. This is because computnig takes timeO(N?) to compute, whereas~1Ux can be computed in time
O(N). Similar remarks apply téAT) L.

Next, the energies and constraints are now set as

N
£= Z)Wj 3pI%j|* = 3pnx" Wx (77)
J:
< 1 2
V= ZOWJ- &l
= (78)
= Jen(Dax — 6A~12)TW(Dox — 6A12)
< 1 2
C =% wjzajlxj]
= (79)
= In(D1x+3CA12)TW(a x D1x + 3CA'z)
X[2=1 (80)

where the Lagrange multiplier &= [0g,041,...,0an]T, and the weight; is n unlessj = 0,N when it is%r], according to
the trapezoidal rule for numerical integration, aids the(N + 1) x (N + 1) diagonal matrix whose diagonal entries are 1
except for the top and bottom entries which éreand* denotes the pointwise multiplication of vectors

O % X = [OoXg, A1X1, . .., ANXN] (81)

XY = [X0-Y0,X1-Y1,- .- XN - YN] (82)

We now apply Hamilton’s principle, noting that the variatiéxg is zero if any of the conditions (14) or (15) are satisfied,
andoxy is zero if any of the conditions (17) or (18) are satisfied.
We obtain the equation

Epx = EW 1 (—eDIWD2x + e6DJ WA~z
+3D] W(a* (CA12)) + D]W(a * (D1x)))
(D1x) % (D1x) =1 (84)

(83)

HereE is the(N+ 1) x (N+ 1) diagonal matrix whose diagonal entries are 1, except fovéngtop and bottom entries. The
top entry ofE is 0 if conditions (14) or (15) hold, and 1 if (16) holds, anahBarly the bottom entry ok is 0 if conditions (17)
or (18) hold, and 1 if (19) holds. Thus, for example, if the oy bottom entries df are zero, then the equatiéx = Ey is
really sayingkj =yjfor1<j<N-1.

For the damped equation, we present the equation

EpX = EW1(—eDJ WD,x + 6D} WA 1z
+ 3D W(a % (CA~12)) + DI W(a * (D1x)) (85)
+ VD] WDox — v6DI WA~ 12)



6 TheTime Discretization

The numerical solution to these equations turns out to Beeranhore difficult than simply finding some finite mesh
scheme, and feeding it into ones favorite ODE solver. A bigbfem is that the differential equations (20), (50), (83),
and (85) are examples @atiff equations. The notion of stiffness is well known in the tlyeof numerical solutions to
differential equations. It happens when one part of thetgwlievolves far more quickly in time than another part of the
solution. For example, when solving the heat equation psigikes of heat will quickly dissipate, whereas broad negiof
low density heat do not change much at all. The problem isahaty short time step is then needed, because otherwise the
parts that decay fast will overshoot, and create large &ffat the final numerical solution, whereas in actuality tren¢ual
effect of the fast parts should be negligible. The problerstiffness has been amply handled in the numerical diffeakent
equation literature, and today many so called ‘stiff-scdvare available in proprietary and open-source packab#is [

However, our equations have a different type of stiffnesgidal stiffness involves linear operators whose eigamssl
can be very large, but in the negative direction. Our equatias large eigenvalues, but in the imaginary direction.s Thi
means that instead of the fast parts quickly dissipatirey, tscillate very rapidly. The problem is similar to spirmancoin,
and then trying to predict the precise orientation of then@iactly one second later. The coin will have spun many times
and the space and time measurements have to be extremefataccu

For this reason, we take advantage of the fact that our emsatome from applying Hamilton’s principle, and as
explained in Section 2, we look for a method that will presemdiscretized version of the Hamiltonian.

The goal is to apply Hamilton’s principle to find the ODE whistlves for them-dimensional vectox, using kinetic
energy, potential energy and constraints which are of theWng form:

E(x) = 1xTKx (86)

V(x) = 3xVX+v-x (87)

Ci(X) = IXTCx+ o x+xk=0  1<k<M (88)
M

C(x) =% aCu(x) (89)
k=1

HereK andV are positive definite matrice€y for 1 < k < M are symmetric matricesy for 1 < k <M andv are vectors,
andxy for 1 < k < M are scalars.
Hamilton’s principle gives the equation

M
Kk =-0V(x) — z okOC(x) (90)
k=1
and a damped version of the equation is
M
Kx = —0%(x) — 3 axOC(X) —g(X) (91)
K=1
where
g(x) = Gx (92)

is a damping term satisfying- g(x) > 0, that is,G is positive semi-definite.

Now let us describe the discrete numerical scheme to so&v®DE. Pick some small time stépand slightly abusing
notation, denot& att = nh by x,,. The idea behind the time discretization is to find replacamséor the gradients, that is,
vector valued function® ¥ (x,_1,Xn+1) andDCy(Xn-1,Xn+1) SO that

(Xn41—Xn-1) - DV (Xn-1,%Xn11) = V(Xny1) — V' (Xn-1) (93)
(Xn4+1—Xn-1) - DCi(Xn-1,Xn+1) = Ck(Xn+1) — Ck(Xn-1) (94)

and

DV (Xn-1,Xn41) = OV (
DCi(Xn—1,Xn+1) = OCk (

(Xn-1+ Xn+1)) + O(hz) (95)

1
2
3 (Xn-1+Xn41)) +O(H?) (96)



In our case, becausi andCy are quadratic functions, it is easily shown that the follogvthoices work

DV (Xn-1,Xns1) =V (:—ZL (Xn—1+ Xn+1)) +v (97)
DC«(Xn-1,Xn+1) = Ck (% (Xn-1+ Xn+1)) +Ck (98)

In general, the choice dD¥(xXn-1,Xn+1) iS Not unique. (In the paper [10]/(x) is of the form 3 ;V(x;), and so

(DV(Xn-1,Xn11))j = (V (Xnt1,j) =V (Xn-1,j))/ (Xns1,j — Xn—1,) Works.)
The discrete numerical scheme proposed is

K Xnt1— 2Xn+Xn-1
h2

)=—Dvunbmﬂ>

M D Xn+1— Xn-1 (99)
- kZlak Ci(Xn—1,Xn+1) — 0 <T>
Cléni1) =0 (1<k<M) (100)

We assume tha@x(xo) = C«(x1) = 0 (1 < k < M). This scheme requires solvilg + m non-linear equations fot,;1 and
(ak)1<k<m- Since the equations are quadratic, it should be easy te ssing a Newton-Raphson or a Levenberg-Marquardt
algorithm, because the Jacobian is easily computed. Natsmethat this scheme is of order 2 because of equations (95)
and (96).

Define thediscrete Hamiltoniarby

Hni1 = 2—&,2 (Xnt1—Xn)"K(Xnt1—Xn) + %((V(XrH’l) + V(xn)) (101)

Theorem 3. The solution to difference scher(®@9)-(100) satisfies that the discrete Hamiltonian is non-increasiog,
constant in the case thgt= 0:

Hni1—Hn= —:—ZL(Xn+1 —Xn-1)-0 (2_%1 (Xn+1— anl)) <0 (102)

Thus the solution to this difference scheme stays in a cohggdc This guarantees that the solution will not blow up,
and this suggests that the solution will be stable.

Proof. Dot product both sides of equation (99) %VXnH —Xn—1). The left hand side becomes

Xn+1— Xn-1 T K Xnt1— 2Xn+Xn-1
2 h2

= 2_# (Xn1— Xn) K(Xn+1—Xn) e
— 5 (Xn —Xn—1) " K(Xn—Xn_1)
The right hand side becomes
— 1 (Xn+1—Xn-1) - DV (Xn—1,%n+1)
-1 kiak(xnﬂ —Xn-1) - DC«(Xn-1,Xn+1)
- %(;nﬂ —%n-1) -9 (Xn+1—Xn-1))
= — 3(V(xn+1) = V(¥n-1)) (104)

M
7 Y ok(Ci(*n+1) — Culxn-1))

k=1

(Xn+1—Xn-1)-0 (2_1h (Xn+1— Xn—l))
(‘V(XnJrl) + (V(Xn)) + %(V(Xn) + "V(anl))
(

Xn41—Xn-1)-Q (2_1h (Xnt1— anl))

NI NI NI



Fig. 1. A heavily damped, coiled, elastic rod unraveling.

because from equation (100) we h&&xn+1) = Ck(Xn—1) = 0.

Finally, let us discuss the initial conditions. These aremally specified by assuming we know= F andx = G at
t =0, whereF andG are given. To guarantee that the method is still order 2 ie titme discrete versions of these conditions

are

xo=F (105)
X1 —X_1=2hG (106)

the latter equation being correct up@h®). Thusxo is immediately known, and; can be found by substituting equa-
tion (106) into equation (99) with = 0.

7 Example I mplementations of the Numerical Scheme
We implemented the numerical scheme using Wolfrdweshematica §rogram. The first example is of an elastic rod
that is initially coiled. We then let the elastic rod “unrgvassuming that both ends are fixed but allowed to rotatelyrdn

this case, the initial data and boundary conditions are

x(s) = —[sin(sin(8)s), cogsin(6)s),cog0)s| " (107)

(0<s<L=6m 6=18t=0)
x=1[0,0,0" (t=0) (108)
x(0 andx(6m) are fixed (109)
(110)

x'(0 andx’(6m) are free

The simulation ran witlp =€ =1, andv = 10. The program ran witN = 50, and a time step size bf= 5 with 0<t < 100.
In Figure 1, we show the odd numbered steps up to the 17th Btepsimulation took about five minutes of computer time
to run on a laptop with an Intel Q740 i7 processor running a88GHz.
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Fig. 2. An elastic rod rotating about a point.
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Fig. 3. An elastic rod fixed at two ends, one of which is oscillating.

The second example is an elastic rod that is initially strai@ne end is free, and the other end is clamped and rotating
about a single point. The initial data and boundary condgiare

x(s)=[0,0,7 (0<s<L=3,t=0) (111)
x=0,0,0]" (t=0) (112)
x(0) =10,0,0)" (113)
x'(0) = [0,sin(gt),coggt)]" (114)
X(3) andx’(3) are free (115)

The simulation ran withp = € = 1, andv = 1/20. The program ran witN = 10, and a time step size bf=1/6. In Figure 2,
we show results for &t < 10. We show 60 steps, 4 steps per frame, with the first andtigsto$ each frame matching).
The simulation took about three minutes on the above destibmputer.

The third example is an elastic rod that is initially a semnéle. Both ends are known functionsgfand rotate freely.
One end oscillates. The intent is to show the effect of ineti the elastic rod. The initial data and boundary condstame

x(s) = [sin(s),0,coqs)]" (0<s<L=mt=0) (116)
x(s)=[0,0,0]" (t=0) (117)
x(0)=10,0,1)" (118)
x(1) = [0,0,—1+ Zsin(2t)]" (119)

x'(0) andx'(m) are free (120)
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Fig. 4. An elastic rod, clamped at one end, free at the other end, under the influence of gravity.

The simulation ran witlp = € = 1, andv = 1/5. The program ran withl = 15, and a time step size b= 0.02. In Figure 3,
we show results for & t < 3. We show every 15th step up to 30 steps. The simulation tboktaone minute to run on the
above described computer.

The final example is to simulate an elastic rod, vertical bigh#ly bent, clamped at the bottom and free at the top, and
see how it falls under the influence of gravity. The paransetesre chosen so that the fall was rather wild, to illustrage t
robustness of the numerical scheme. The initial data anddsoy conditions are

x(s) = 100/cogs/100) — 1,0,sin(s/100)]"

(121)
(0<s<10,t=0)
x=1[0,0,0]" (t=0) (122)
x(0) = [0,0,0]" (123)
x'(0) = [0,0,1]" (124)
X(10) andx’(10) are free (125)

We added to the Hamiltonian a gravitational figle: [0, 0, —%]T (thatis, addpg to the right hand side of equation (85)), and
the simulation ran withp = € = 1, andv = 0.1. In Figure 4, we show results for<0t < 40. The program ran with = 20,
and a time step size ¢f= 0.1, showing a total of 400 steps (5 steps per frame, with thedird last step of each frame
matching). The simulation took about twenty minutes to raritee above described computer.

8 Comparison of a Numerical Solution with an Analytical Solution

Solutions to the steady state equations are well known [I8FEdr example, if a steady state elastica of lerig#atisfies
boundary conditions (15) and (18) with

x(0) = [-a,0,0] (126)
x(L) =[a,0,0]" (127)



Fig. 5. A steady state solution.

Fig. 6. Plotof 4Erfyryqforr =0,1,2.
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then a solution is

1 2E(am(a(s—L/2),m),m) —a(s—L/2)
X(s) = 3 2y/m cn(a(g— L/2),m) (128)

whereE is the elliptic integral of the second kind, am is the Jacabpbtude function, and cn is the cosine Jacobi elliptic
function. For example, it. = 6manda = 2v/2, then using theMathematicaFindRoot command, we find thain =

0.624401a = 0.209749. The plot of this solution is shown in Figure 5.
We ran the numerical simulation with initial data and bouyd@nditions

X(s) = [4sin((s— 3m)/4),4cog(s— 3m)/4) +2v/2,0]" (129)
(0<s<L=6mt=0)

x=1[0,0,0]" (t=0) (130)
x(0 andx(6m) are fixed (131)
(132)

x'(0 andx’(6m) are free

The simulation ran witlp = € = 1, andv = 10. The program ran witN = 50, and a time step size bf=5 with 0<t < 100.
We compared the numerical solutiontat 100 with the analytical solution, where it is observed the humerical
solution attains a steady state. The maximum differenced®t the numerical solution and the analytic solution wasiab

0.003.

9 Numerical evidencethat the numerical method is of order two
We have already indicated that the error produced by the diseretization is of order 2. It also follows from error

bounds for cubic splines (see for example [14]), and erranbis for the trapezoidal rule for integration (see for exiafy))



that the space discretization should also be of order 2. We tested this numerically by performing the same computing
for various values oM andN (or equivalently different values of andh).

The example computation we chose to use was the first exampledtion 7, with_ changed to & The computations
were performed four times, with

(M,N) = (50x 2",10x 2"),  (r=0,1,2,3) (133)

to produce solutions which we call respectivelys,t) (r =0, 1,2,3). We computed the root mean square differences

L 1/2
Errrm(t)_( /0 |xr(s,t)—x,+1(s,t)|2ds) . (r=0,1,2 (134)

where the integrals were approximated by the trapezoidial ru
If the numerical method is of ordgg we would expect

E t
Erra® o (135)

Errr+l,r+2(t)
Figure 6 shows “Err, 1 for r = 0,1,2, and Figure 7 shows their ratios. These strongly suggestaumerical methods
converge with order at least 2.

10 Conclusion
In this paper, we have presented a robust and fast numecivairse for simulating the dynamic behavior of elastica in
three dimensions. We have employed two sets of techniques:

1. We have used cubic splines for the space discretizatibis Has proven to be a good discretization. We believe that
this may be because the cubic spline is a first order appraximor elastica. It has also been computationally efficien
because cubic splines can be computed using tridiagonaicesat

2. For the time discretization, we derived a numerical sahémat preserves the Hamiltonian. The scheme was derived
from the Lagrangian formulation of the dynamics, and thelltegy scheme seems to be simpler to understand and
implement than other Hamiltonian preserving numericaésuoés.

In a later work we plan to extend our work to include the effeictorsion and natural curvature. This will require
extending our Hamiltonian preserving scheme to allow dgoiéetms to appear in the Lagrangian.
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