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ABSTRACT

Static equations for thin inextensible elastic rods, orelasticaas they are sometimes called, have been studied
since before the time of Euler. In this paper, we examine how to model the dynamic behavior of elastica. We present
a fairly high speed, robust numerical scheme that uses (i) a space discretization that uses cubic splines, and (ii)
a time discretization that preserves a discrete version of the Hamiltonian. A good choice of numerical scheme is
important, because these equations are verystiff, that is, most explicit numerical schemes will become unstable
very quickly. The authors conducted this research anticipating describing the dynamic Kirchhoff problem, that is,
the behavior of general springs that have natural curvature, and for which the equations take into account torsion
of the rod.

1 Introduction
The purpose of this research is to find an efficient and robust numerical scheme that simulates the dynamic behavior of

springs, including springs that are not necessarily helical. For our purposes, we will define a spring to be a rod made out of
an infinitesimally thin piece of wire, which has a natural curvature, is inextensible, and thereafter acts in an elastic fashion,
possibly with damping, but with no plasticity. The general theory of elastic rods is referred to as the Kirchhoff problem, and
is described in the classic work of Love [20].

In this paper, we make a modest beginning by modeling the dynamics ofelastica. By this we mean a spring with no
natural curvature, and in which we do not consider the effectof torsion. We also assume that the properties of the wire are
uniform along the length of the wire. In [22], we plan to discuss the general shaped spring.

The literature on steady state solutions for elastica is huge, and we refer the reader to Levian [18] and Love [20].
For modeling dynamic behavior, Falk and Xu [10] found a stable second order scheme for elastica, and the numerical
scheme presented in their paper has many similarities to this present work. Other works on elastica include Caflisch and
Maddocks [5], Coleman and Dill [7], Dichmann, Maddocks and Pego [8], Ito [15,16], and Maddocks and Dichmann [21].

The more general theory of springs seems to go back to the classical work of Thomson [35]. This theory established
geometric relationships between the various spring parameters, such as pitch angle, static load, coil curvature, and the radius
of the spring helix. However Thomson assumed that the springis helical with constant pitch and spring radius. A later
paper by Lin and Pisano [19] deals with more general helical springs, allowing the pitch angle and spring radius to vary asa
function of arclength.

A very general and impressive framework is given by Pai [24, 25], in which he models highly flexible structures using
finite element analysis. From a numerical point of view, he can recreate our results by setting the extensibility of the rod to a



very low value. However since our paper restricts itself to rod like structures, we believe that we can obtain faster and more
robust results.

From reading various conference abstracts, we see that manypeople are working on solving these kinds of problems.
It has been hard for us to survey the complete literature, andso there may be important works that we have missed. We
mention the book by Antman [1] which gives a mathematically rigorous account, the Ph.D. thesis of Goss [12] which
described experimental results, and the web page of his adviser van der Heijden [36] which includes many applications of
the study of slender rods.

Most work on elastica is in two dimensions, and since torsionis not taken into account, this is natural. However since
we are anticipating including torsion in later works, we preferred to work in three dimensions. We have to make use of
a Lagrange multiplier arising from keeping the arclength ofthe rod constant. This Lagrange multiplier has an interesting
property in that it satisfies a one-dimensional Sturm-Liouville equation. This equation also appears in the theory of whips
and chains by Preston [26,27] and Thess et al [34].

2 Lagrangians, Hamiltonians, and energy conserving numerical methods
The time discretization method we present in this paper is designed to preserve the energy of the system. Many papers

on energy conserving methods for Hamiltonian equations have been written, and some of these works are very deep and
difficult [3,6,11,17,23,28–33]. Many of them explicitly deal with the problems we are attempting in this paper.

We believe our approach is simpler for the following reason.Historically, the notion of representing equations of
motion by Hamiltonians came after it was realized that many equations of motion came from a principle of least action. Let
us consider the simple case when the kinetic energy is a simple quadratic

E = E(v) = 1
2m|v|2 (1)

wherev = ẋ is the velocity in somem-dimensional space, and the potential energyV = V (x) depends only upon the
positionx. Suppose furthermore that the particle is constrained to stay in a submanifold ofm-dimensional space given by
theM constraints

Ck(x) = 0 1≤ k≤ M (2)

The Hamiltonian approach is to introduce themomentump = mv, the HamiltonianH = E(p/m)+V (x), and write down
the usual Hamiltonian equations of motion, and see that the Hamiltonian is conserved as the equations of motion evolve.
However, prior researchers, have found it to be a struggle (albeit they have been successful in many cases) to find effective
time discretizing numerical schemes that preserve the Hamiltonian.

The method presented in this paper is to go back to the Lagrangian equations from which the Hamiltonian equations
were historically derived. This method of creating the equations of motion is often called Hamilton’s principle. That is, we
create the action

S(x) =
∫ t2

t1
(−E+V +C )dt (3)

where

C =
m

∑
k=1

αkCk(x) (4)

is the term involving the Lagrange multipliers,αk. Then Hamilton’s principle (also called the principle of least action) is that
the equation of motion can be found by calculating the stationary point of the action. That is, find the vectorx, satisfying the
constraints, such that for any infinitesimal perturbationδx of x, we have

δS(x) = S(x+ δx)−S(x) = O(|δx|2) (5)

Then it is well known that the resulting equation of motions conserve the Hamiltonian

H(t) = E(ẋ)+V (x) (6)



One of the goals of this paper is to present a time discretization numerical method that computesxn = x(t) for t = nh, and
such that the followingdiscretized Hamiltonianis conserved

Hn = E

(

xn+1− xn

h

)

+
V (xn)+V (xn+1)

2
(7)

Such a scheme which preserves this discretized Hamiltonianwas already presented in [10], and the philosophy behind their
scheme is the same as ours. Their method works in the special case thatV (x) =∑m

j=1V(x j). Our method works in the special
case thatV (x) andCk(x) are quadratic functions ofx. In future papers (for example, where we solve the more general spring
problem), we will present numerical methods that conserve the discretized Hamiltonian in a wider class of circumstances.

The paper by Simo, Tarmow and Wong [32] discusses the case when the kinetic and potential energies are quadratic
functions. But as they point out, this only gives linear dynamics. But it turns out that adding quadratic constraints give
extremely interesting non-linear dynamics. For example, the work on rigid motions by Simo and Wong [30] could have
been done using quadratic constraints (since the conditionthat a matrix is orthogonal is a quadratic constraint on the matrix
entries).

We believe that this more simple minded approach may have been missed by many researchers because in the context
of Hamiltonians, the position and momentum are considered to be two different, more or less interchangeable, variables,
whereas in our Lagrangian approach to the discretized Hamiltonian, position and velocity clearly play very distinct roles.

3 The Mathematical Model
We describe the path of the spring by a functionx : [0,L]→R

3

x(s) = [x1(s),x2(s),x3(s)]
T (8)

Heres is the arclength along the rod, and hence the functionx(s) necessarily satisfies the constraint equation

|x′(s)|2 = x′1(s)
2+ x′2(s)

2+ x′3(s)
2 = 1 (9)

Here the prime represents differentiation with respect to the arclength. We will represent the derivative with respectto time
by placing a dot over the variable.

We assume that the material from which the rod is constructedhas two parameters:ρ which is the mass per unit length
of the rod, andε which is the elasticity of the material from which the rod is made. In this paper, these will both be constant
throughout the length of the rod, however removing these assumptions would not greatly complicate the exposition.

The energy of the rod consists of two parts, its kinetic energy E , and its potential energyV , where

E =

∫ L

0

1
2ρ|ẋ(s)|2 ds (10)

V =
∫ L

0

1
2ε|x′′(s)|2 ds (11)

There is also a possible additional term to the kinetic energy

∫ L

0

1
2σ|ẋ′(s)|2 ds (12)

whereσ is the moment of inertia of the cross section perpendicular to the rod per unit length. Since we assume that the rod
is infinitesimal in thickness, we will setσ = 0. However this term is non-zero in the two dimensional equations obtained by
Caflisch and Maddocks [5], and used by Falk and Xu [10]. Setting σ > 0 would not add any complications.

The constraint is given by

C = 1
2

∫ L

0
α(s)|x′(s)|2 ds (13)



whereα(s) is the Lagrange multiplier.
We allow three different boundary conditions for each end:

x(0) andx′(0) are known functions oft; or (14)

x(0) is a known function oft, and

x′(0) is not a known function oft; or
(15)

neitherx(0) nor x′(0) are known functions oft. (16)

and

x(L) andx′(L) are known functions oft; or (17)

x(L) is a known function oft, and

x′(L) is not a known function oft; or
(18)

neitherx(L) nor x′(L) are known functions oft. (19)

When we apply Hamilton’s method, we suppose in the case that any of the conditions (14), (15), (17) or (18) are satisfied,
that the known functions oft are constant. However once the solution to equation (5) is found, the solution is still valid in
the case that the known functions oft are not constant.

Theorem 1. The variation equationδS = 0 is solved by the equations

ρẍ+ εx′′′′− (αx′)′ = 0 (20)

with additional boundary conditions

x′′(0) = 0 if (15); (21)

x′′(0) = x′′′(0) = 0 if (16); (22)

x′′(L) = 0 if (18); (23)

x′′(L) = x′′′(L) = 0 if (19). (24)

It can be shown thatα satisfies

α′′−|x′′|2α =−ρ|ẋ′|2− ε(4x′′′′ ·x′′+3|x′′′|2) (25)

with boundary conditions

α′(0) = ρẍ(0) ·x′(0)−3εx′′(0) ·x′′′(0) if (14)or (15); (26)

α(0) = 0 if (16); (27)

α′(L) = ρẍ(L) ·x′(L)−3εx′′(L) ·x′′′(L) if (17)or (18); (28)

α(L) = 0 if (19). (29)

Note that the equation forα will have a unique solution if and only if the Sturm-Louiville operator

−β′′+ |x′′|2β (30)

β′(0) = β′(L) = 0 if ((14) or (15)) and ((17) or (18))

β(0) = β′(L) = 0 if (16) and ((17) or (18))

β′(0) = β(L) = 0 if ((14) or (15)) and (19)

β(0) = β(L) = 0 if (16) and (19)

(31)



doesn’t have zero in its spectrum. This will be the case whenever condition (16) or (19) hold, or whenever the rod isn’t
a straight line (that isx′′ is not identically zero), because in these circumstances the Sturm-Louiville operator is positive
definite. See [2,9].

For example, to see thatα is unique whenx(0) andx(L) are known functions oft and the rod isn’t a straight line,
suppose thatα1 andα2 are solutions. Thenβ = α1−α2 satisfies

−β′′+ |x′′|2β = 0, β′(0) = β′(L) = 0 (32)

and hence integrating by parts we see

∫ L

0
|β′|2+ |x′′β|2ds=

∫ L

0
β(−β′′+ |x′′|2β)ds= 0 (33)

We have thatβ′ = 0, and henceβ is constant. But alsox′′β = 0, and hence ifx′′(s) 6= 0 for somes, thenβ = 0.
Note that ifx(0) andx(L) are known functions oft, then it is physically reasonable that equation (25) with the boundary

conditions may not have a unique solution if the rod isn’t straight, because it is possible that the rod is being pulled apart.

Proof of Theorem 1.The variation of the action with respect tox is

∫ t1

t=t0

∫ L

s=0
−ρδẋ · ẋ+ εδx′′ ·x′′+αδx′ ·x′dsdt

=
∫ t1

t=t0

[

εδx′ ·x′′
]L
s=0−

[

δx · (εx′′′−αx′)
]L

s=0

+
∫ L

s=0
δx · (ρẍ+ εx′′′′− (αx′)′)dsdt

(34)

Setting the variation equal to zero, sinceδx is an arbitrary function oft with the exception that it must be zero att = t0 or
t = t1, we obtain

[

εδx′ ·x′′
]L

s=0−
[

δx · (εx′′′−αx′)
]L

s=0

+

∫ L

s=0
δx · (ρẍ+ εx′′′′− (αx′)′)ds= 0

(35)

We obtain equation (20) becauseδx(s) is arbitrary on any closed subinterval of(0,L).
Next, since

|x′|2 = 1 (36)

differentiating up to four times with respect tos, we obtain

x′ ·x′′ = 0 (37)

|x′′|2 =−x′ ·x′′′ (38)

x′ ·x′′′′ =−3x′′ ·x′′′ (39)

x′′′′′ ·x′ =−4x′′′′ ·x′′−3|x′′′|2 (40)

and differentiating twice with respect tot, we obtain

ẍ′ ·x′ =−|ẋ′|2 (41)

Differentiating equation (20) with respect tos, we obtain

ρẍ′+ εx′′′′′−α′′x′−2α′x′′−αx′′′ = 0 (42)



and dot producting both sides withx′ we obtain equation (25).
Now let us show the boundary conditions fors= 0, the boundary conditions fors= L following by the same argument.

First, dot producting equation (20) byx′ gives (26). Next, if condition (15) holds, then sinceδx(0) is arbitrary, it follows that
x′′(0) = 0.

If condition (16) holds, then bothδx(0) andδx′(0) are arbitrary, and hence

x′′(0) = 0 (43)

εx′′′(0)−α(0)x′(0) = 0 (44)

Dot producting (44) byx′(0), we obtain

α(0) = εx′(0) ·x′′′(0) =−ε|x′′(0)|2 = 0 (45)

Substituting back into (44) givesx′′′(0) = 0, and hence we obtain (22) and (27).

4 The Hamiltonian and Damping Terms
We define the Hamiltonian to be

H =

∫ L

0

1
2ρ|ẋ|2+ 1

2ε|x′′|2ds (46)

It is well known that the Hamiltonian is a conserved quantityof the equations of motion. However we will include a detailed
statement and short proof. This will help us to understand what terms we might like to use as the damping terms.

The authors do not know any general theory of how to generate the damping terms. Our idea is to find terms that
will cause the Hamiltonian to be a non-increasing function of time, and such that the energy lost in the Hamiltonian could
reasonably be ascribed to creating thermal energy.

Theorem 2. Suppose thatx satisfies the variation of the actionS is zero along with equation(9). Suppose further that in
the case that any of the conditions(14), (15), (17) or (18) are satisfied that the known functions of t are constant. Thenthe
Hamiltonian is conserved, that is

Ḣ = 0 (47)

Proof. Dot product both sides of equation (20) withẋ, and integrate with respect tos from 0 toL, to obtain

0=

∫ L

0
ẋ · (ρẍ+ εx′′′′− (αx′)′)ds

= [εẋ ·x′′′]L0 − [εẋ′ ·x′′]L0 +[αx′ · ẋ]L0

+

∫ L

0
ρẋ · ẍ+ εẋ′′ ·x′′+αẋ′ ·x′ds

= [εẋ ·x′′′]L0 − [εẋ′ ·x′′]L0 +[αx′ · ẋ]L0 + Ḣ

+

∫ L

0

1
2α

(

∂
∂t
|x′|2

)

ds

(48)

It can be seen that under any of the boundary conditions the cross terms disappear, and also the last integral disappears
because of equation (9).

This suggests that we could introduce damping terms with theview that the new equations should implyḢ ≤ 0 under the
same hypothesis as Theorem 2. Furthermore, any damping termshould be such that whenever the rod experiences some kind
of internal change, energy is transformed into thermodynamic heat. An example of such an internal change isx′′ changing,
but would not bex′ changing since the latter merely reflects a change of frame ofreference. (But if the rod is operating in



an atmosphere that is stationary, then one might expect damping to be caused byx changing. We won’t consider this last
possibility.)

Thus it seems reasonable that that any damped equation should imply something like

Ḣ =−ν
∫ L

0
|ẋ′′|2 ds (49)

whereν is a damping constant. By following the proof of Theorem 2, ifwe replace equation (20) by

ρẍ+ εx′′′′−νẋ′′′′− (αx′)′ = 0 (50)

with appropriate changes to equations (25), (26) and (28), we see that equation (49) is satisfied. Thus, we propose equa-
tion (50) as thedampedversion of the dynamic equation of the elastic rod.

5 The Space Discretization
We approximate the path of the elastica by a cubic spline. We pick some positive integerN, and set the space mesh size

η = L/N. We define

x j = x(η j) (0≤ j ≤ N) (51)

suppose thatx(s) is a cubic spline passing through these points, that is,x(s) is a piecewise cubic function forjη ≤ s≤
( j +1)η, and it has a continuous second derivative.

In addition, if the rod satisfies boundary condition (14), wewill choose a spline that is clamped ats= 0 satisfying the
same boundary condition. Similarly for the boundary condition (17).

If the rod satisfies the boundary condition (15) or (16), theninspired by Theorem 1, the spline will be free ats= 0, that
is, the spline will satisfy the boundary conditionx′′(0) = 0. (In the case boundary condition (16) is satisfied, we mightbe
tempted to try the additional boundary conditionx′′′(0) = 0, but since it is a cubic spline it is unreasonable to expect this to
be satisfied.) Again, similarly for the boundary condition (18) or (19).

We denote the first and second derivatives of the spline

x′j = x′(η j), x′′j = x′′(η j) (0≤ j ≤ N) (52)

It is well known that these derivatives can be computed usingthe following matrices (see for example [4]):

A=























A0,0 A0,1 0 0 · · · 0 0
η 4η η 0 · · · 0 0
0 η 4η η · · · 0 0
0 0 η 4η · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 4η η
0 0 0 0 · · · AN,N−1 AN,N























(53)

where

A0,0 = 2η, A0,1 = η if condition (14) holds; (54)

A0,0 = 1,A0,1 = 0 if condition (15) or (16) hold; (55)

AN,N−1 = η, AN,N = 2η if condition (17) holds; (56)

AN,N−1 = 0,AN,N = 1 if condition (18) or (19) hold. (57)



U=
1
η























U0,0 U0,1 0 0 · · · 0 0
3 −6 3 0 · · · 0 0
0 3 −6 3 · · · 0 0
0 0 3 −6 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −6 3
0 0 0 0 · · · UN,N−1 UN,N























(58)

where

U0,0 =−3,U0,1 = 3 if condition (14) holds; (59)

U0,0 = 0,U0,1 = 0 if condition (15) or (16) hold; (60)

UN,N−1 = 3,UN,N =−3 if condition (17) holds; (61)

UN,N−1 = 0,UN,N = 0 if condition (18) or (19) hold. (62)

B=
1
η























−1 1 0 0 · · · 0 0
0 −1 1 0 · · · 0 0
0 0 −1 1 · · · 0 0
0 0 0 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −1 1
0 0 0 0 · · · −1 1























(63)

C=
η
3























2 1 0 0· · · 0 0
0 2 1 0· · · 0 0
0 0 2 1· · · 0 0
0 0 0 2· · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0· · · 2 1
0 0 0 0· · · −1 −2























(64)

From now on we employ an abuse of notation, and allowx, x′ andx′′ to denote either the functions on[0,L], or the vectors

x = [x0,x1, . . . ,xN]
T (65)

x′ = [x′0,x
′
1, . . . ,x

′
N]

T (66)

x′′ = [x′′0,x
′′
1, . . . ,x

′′
N]

T (67)

where which notation we intend should be obvious from the context. Here each of the entries of these vectors is itself a three
dimensional vector1. We also denote

z = [z0,0,0, . . . ,0,zN]
T (68)

with

z0 = x′(0) if condition (14) holds; (69)

z0 = 0 if condition (15) or (16) hold; (70)

zN =−x′(L) if condition (17) holds; (71)

zN = 0 if condition (18) or (19) hold. (72)

1Some people might argue that a vector of vectors should really be called a tensor.



Then

x′′ = D2x−6A−1z (73)

x′ = Bx− 1
2Cx′′ = D1x+3CA−1z (74)

where

D2 = 2A−1
U (75)

D1 = B−CA
−1
U (76)

Note that these matrices can be written in sparse form. In particular,A should be represented as its LU factorization, because
A−1 is not sparse. This is because computingA−1 takes timeO(N2) to compute, whereasA−1Ux can be computed in time
O(N). Similar remarks apply to(AT)−1.

Next, the energies and constraints are now set as

E =
N

∑
j=0

wj
1
2ρ|ẋ j |2 = 1

2ρηẋT
Wẋ (77)

V =
N

∑
j=0

wj
1
2ε|x′′j |2

= 1
2εη(D2x−6A−1z)T

W(D2x−6A−1z)

(78)

C =
N

∑
j=0

wj
1
2α j |x′j |2

= 1
2η(D1x+3CA−1z)T

W(α∗D1x+3CA−1z)

(79)

|x′|2 = 1 (80)

where the Lagrange multiplier isα = [α0,α1, . . . ,αN]
T , and the weightwj is η unlessj = 0,N when it is 1

2η, according to
the trapezoidal rule for numerical integration, andW is the(N+1)× (N+1) diagonal matrix whose diagonal entries are 1
except for the top and bottom entries which are1

2, and∗ denotes the pointwise multiplication of vectors

α∗ x = [α0x0,α1x1, . . . ,αNxN]
T (81)

x ∗ y = [x0 ·y0,x1 ·y1, . . . ,xN ·yN]
T (82)

We now apply Hamilton’s principle, noting that the variation δx0 is zero if any of the conditions (14) or (15) are satisfied,
andδxN is zero if any of the conditions (17) or (18) are satisfied.

We obtain the equation

Eρẍ = EW
−1(−εDT

2WD2x+ ε6DT
2WA

−1z

+3DT
1W(α∗ (CA−1z))+D

T
1W(α∗ (D1x)))

(83)

(D1x)∗ (D1x) = 1 (84)

HereE is the(N+1)× (N+1) diagonal matrix whose diagonal entries are 1, except for thevery top and bottom entries. The
top entry ofE is 0 if conditions (14) or (15) hold, and 1 if (16) holds, and similarly the bottom entry ofE is 0 if conditions (17)
or (18) hold, and 1 if (19) holds. Thus, for example, if the topand bottom entries ofE are zero, then the equationEx = Ey is
really sayingx j = y j for 1≤ j ≤ N−1.

For the damped equation, we present the equation

Eρẍ = EW
−1(−εDT

2WD2x+ ε6DT
2WA

−1z

+3DT
1W(α∗ (CA−1z))+D

T
1W(α∗ (D1x))

+νDT
2WD2ẋ−ν6DT

2WA
−1ż)

(85)



6 The Time Discretization
The numerical solution to these equations turns out to be rather more difficult than simply finding some finite mesh

scheme, and feeding it into ones favorite ODE solver. A big problem is that the differential equations (20), (50), (83),
and (85) are examples ofstiff equations. The notion of stiffness is well known in the theory of numerical solutions to
differential equations. It happens when one part of the solution evolves far more quickly in time than another part of the
solution. For example, when solving the heat equation, sharp spikes of heat will quickly dissipate, whereas broad regions of
low density heat do not change much at all. The problem is thata very short time step is then needed, because otherwise the
parts that decay fast will overshoot, and create large effects on the final numerical solution, whereas in actuality the eventual
effect of the fast parts should be negligible. The problem ofstiffness has been amply handled in the numerical differential
equation literature, and today many so called ‘stiff-solvers’ are available in proprietary and open-source packages [13].

However, our equations have a different type of stiffness. Typical stiffness involves linear operators whose eigenvalues
can be very large, but in the negative direction. Our equation has large eigenvalues, but in the imaginary direction. This
means that instead of the fast parts quickly dissipating, they oscillate very rapidly. The problem is similar to spinning a coin,
and then trying to predict the precise orientation of the coin exactly one second later. The coin will have spun many times,
and the space and time measurements have to be extremely accurate.

For this reason, we take advantage of the fact that our equations come from applying Hamilton’s principle, and as
explained in Section 2, we look for a method that will preserve a discretized version of the Hamiltonian.

The goal is to apply Hamilton’s principle to find the ODE whichsolves for them-dimensional vectorx, using kinetic
energy, potential energy and constraints which are of the following form:

E(x) = 1
2 ẋT

Kẋ (86)

V (x) = 1
2xT

Vx+ v ·x (87)

Ck(x) = 1
2xT

Ckx+ ck ·x+χk = 0 1≤ k≤ M (88)

C (x) =
M

∑
k=1

αkCk(x) (89)

HereK andV are positive definite matrices,Ck for 1≤ k ≤ M are symmetric matrices,ck for 1≤ k≤ M andv are vectors,
andχk for 1≤ k≤ M are scalars.

Hamilton’s principle gives the equation

Kẍ =−∇V (x)−
M

∑
k=1

αk∇Ck(x) (90)

and a damped version of the equation is

Kẍ =−∇V (x)−
M

∑
k=1

αk∇Ck(x)− g(ẋ) (91)

where

g(ẋ) = Gẋ (92)

is a damping term satisfyinġx ·g(ẋ)≥ 0, that is,G is positive semi-definite.
Now let us describe the discrete numerical scheme to solve the ODE. Pick some small time steph, and slightly abusing

notation, denotex at t = nh by xn. The idea behind the time discretization is to find replacements for the gradients, that is,
vector valued functionsDV (xn−1,xn+1) andDCk(xn−1,xn+1) so that

(xn+1− xn−1) ·DV (xn−1,xn+1) =V (xn+1)−V (xn−1) (93)

(xn+1− xn−1) ·DCk(xn−1,xn+1) =Ck(xn+1)−Ck(xn−1) (94)

and

DV (xn−1,xn+1) = ∇V
(

1
2(xn−1+ xn+1)

)

+O(h2) (95)

DCk(xn−1,xn+1) = ∇Ck
(1

2(xn−1+ xn+1)
)

+O(h2) (96)



In our case, becauseV andCk are quadratic functions, it is easily shown that the following choices work

DV (xn−1,xn+1) = V
(1

2(xn−1+ xn+1)
)

+ v (97)

DCk(xn−1,xn+1) = Ck
(

1
2(xn−1+ xn+1)

)

+ ck (98)

In general, the choice ofDV (xn−1,xn+1) is not unique. (In the paper [10],V (x) is of the form∑m
j=1V(x j), and so

(DV (xn−1,xn+1)) j = (V(xn+1, j)−V(xn−1, j))/(xn+1, j − xn−1, j) works.)
The discrete numerical scheme proposed is

K

(

xn+1−2xn+ xn−1

h2

)

=−DV (xn−1,xn+1)

−
M

∑
k=1

αkDCk(xn−1,xn+1)− g
(

xn+1− xn−1

2h

) (99)

Ck(xn+1) = 0 (1≤ k≤ M) (100)

We assume thatCk(x0) =Ck(x1) = 0 (1≤ k ≤ M). This scheme requires solvingM+m non-linear equations forxn+1 and
(αk)1≤k≤M. Since the equations are quadratic, it should be easy to solve using a Newton-Raphson or a Levenberg-Marquardt
algorithm, because the Jacobian is easily computed. Noticealso that this scheme is of order 2 because of equations (95)
and (96).

Define thediscrete Hamiltonianby

Hn+1 =
1

2h2 (xn+1− xn)
T
K(xn+1− xn)+

1
2(V (xn+1)+V (xn)) (101)

Theorem 3. The solution to difference scheme(99)-(100) satisfies that the discrete Hamiltonian is non-increasing,or
constant in the case thatg = 0:

Hn+1−Hn =− 1
2(xn+1− xn−1) ·g

(

1
2h(xn+1− xn−1)

)

≤ 0 (102)

Thus the solution to this difference scheme stays in a compact set. This guarantees that the solution will not blow up,
and this suggests that the solution will be stable.

Proof. Dot product both sides of equation (99) by1
2(xn+1− xn−1). The left hand side becomes

(

xn+1− xn−1

2

)T

K

(

xn+1−2xn+ xn−1

h2

)

= 1
2h2 (xn+1− xn)

T
K(xn+1− xn)

− 1
2h2 (xn− xn−1)

T
K(xn− xn−1)

(103)

The right hand side becomes

− 1
2(xn+1− xn−1) ·DV (xn−1,xn+1)

− 1
2

M

∑
k=1

αk(xn+1− xn−1) ·DCk(xn−1,xn+1)

− 1
2(xn+1− xn−1) ·g

(

1
2h(xn+1− xn−1)

)

= − 1
2(V (xn+1)−V (xn−1))

− 1
2

M

∑
k=1

αk(Ck(xn+1)−Ck(xn−1))

− 1
2(xn+1− xn−1) ·g

(

1
2h(xn+1− xn−1)

)

= − 1
2(V (xn+1)+V (xn))+

1
2(V (xn)+V (xn−1))

− 1
2(xn+1− xn−1) ·g

( 1
2h(xn+1− xn−1)

)

(104)



Fig. 1. A heavily damped, coiled, elastic rod unraveling.

because from equation (100) we haveCk(xn+1) =Ck(xn−1) = 0.

Finally, let us discuss the initial conditions. These are normally specified by assuming we knowx = F and ẋ = G at
t = 0, whereF andG are given. To guarantee that the method is still order 2 in time, the discrete versions of these conditions
are

x0 = F (105)

x1− x−1 = 2hG (106)

the latter equation being correct up toO(h3). Thusx0 is immediately known, andx1 can be found by substituting equa-
tion (106) into equation (99) withn= 0.

7 Example Implementations of the Numerical Scheme
We implemented the numerical scheme using Wolfram’sMathematica 8program. The first example is of an elastic rod

that is initially coiled. We then let the elastic rod “unravel,” assuming that both ends are fixed but allowed to rotate freely. In
this case, the initial data and boundary conditions are

x(s) =−[sin(sin(θ)s),cos(sin(θ)s),cos(θ)s]T

(0≤ s≤ L = 6π, θ = 1.8, t = 0)
(107)

ẋ = [0,0,0]T (t = 0) (108)

x(0 andx(6π) are fixed (109)

x′(0 andx′(6π) are free (110)

The simulation ran withρ = ε= 1, andν = 10. The program ran withN= 50, and a time step size ofh= 5 with 0≤ t ≤ 100.
In Figure 1, we show the odd numbered steps up to the 17th step.The simulation took about five minutes of computer time
to run on a laptop with an Intel Q740 i7 processor running at 1.73GHz.



-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

Fig. 2. An elastic rod rotating about a point.
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Fig. 3. An elastic rod fixed at two ends, one of which is oscillating.

The second example is an elastic rod that is initially straight. One end is free, and the other end is clamped and rotating
about a single point. The initial data and boundary conditions are

x(s) = [0,0,s]T (0≤ s≤ L = 3, t = 0) (111)

ẋ = [0,0,0]T (t = 0) (112)

x(0) = [0,0,0]T (113)

x′(0) = [0,sin(4
5t),cos(4

5t)]T (114)

x(3) andx′(3) are free (115)

The simulation ran withρ = ε= 1, andν = 1/20. The program ran withN = 10, and a time step size ofh= 1/6. In Figure 2,
we show results for 0≤ t ≤ 10. We show 60 steps, 4 steps per frame, with the first and last step of each frame matching).
The simulation took about three minutes on the above described computer.

The third example is an elastic rod that is initially a semi-circle. Both ends are known functions oft, and rotate freely.
One end oscillates. The intent is to show the effect of inertia on the elastic rod. The initial data and boundary conditions are

x(s) = [sin(s),0,cos(s)]T (0≤ s≤ L = π, t = 0) (116)

ẋ(s) = [0,0,0]T (t = 0) (117)

x(0) = [0,0,1]T (118)

x(π) = [0,0,−1+ 2
5 sin(2t)]T (119)

x′(0) andx′(π) are free (120)
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Fig. 4. An elastic rod, clamped at one end, free at the other end, under the influence of gravity.

The simulation ran withρ = ε = 1, andν = 1/5. The program ran withN = 15, and a time step size ofh= 0.02. In Figure 3,
we show results for 0≤ t ≤ 3. We show every 15th step up to 30 steps. The simulation took about one minute to run on the
above described computer.

The final example is to simulate an elastic rod, vertical but slightly bent, clamped at the bottom and free at the top, and
see how it falls under the influence of gravity. The parameters were chosen so that the fall was rather wild, to illustrate the
robustness of the numerical scheme. The initial data and boundary conditions are

x(s) = 100[cos(s/100)−1,0,sin(s/100)]T

(0≤ s≤ 10, t = 0)
(121)

ẋ = [0,0,0]T (t = 0) (122)

x(0) = [0,0,0]T (123)

x′(0) = [0,0,1]T (124)

x(10) andx′(10) are free (125)

We added to the Hamiltonian a gravitational fieldg = [0,0,− 1
5]

T (that is, addρg to the right hand side of equation (85)), and
the simulation ran withρ = ε = 1, andν = 0.1. In Figure 4, we show results for 0≤ t ≤ 40. The program ran withN = 20,
and a time step size ofh = 0.1, showing a total of 400 steps (5 steps per frame, with the first and last step of each frame
matching). The simulation took about twenty minutes to run on the above described computer.

8 Comparison of a Numerical Solution with an Analytical Solution
Solutions to the steady state equations are well known [18,20]. For example, if a steady state elastica of lengthL satisfies

boundary conditions (15) and (18) with

x(0) = [−α,0,0]T (126)

x(L) = [α,0,0]T (127)
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Fig. 5. A steady state solution.
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then a solution is

x(s) =
1
a





2E(am(a(s−L/2),m),m)−a(s−L/2)
2
√

mcn(a(s−L/2),m)
0



 (128)

whereE is the elliptic integral of the second kind, am is the Jacobi amplitude function, and cn is the cosine Jacobi elliptic
function. For example, ifL = 6π and α = 2

√
2, then using theMathematicaFindRoot command, we find thatm=

0.624401,a= 0.209749. The plot of this solution is shown in Figure 5.
We ran the numerical simulation with initial data and boundary conditions

x(s) = [4sin((s−3π)/4),4cos((s−3π)/4)+2
√

2,0]T

(0≤ s≤ L = 6π, t = 0)
(129)

ẋ = [0,0,0]T (t = 0) (130)

x(0 andx(6π) are fixed (131)

x′(0 andx′(6π) are free (132)

The simulation ran withρ = ε= 1, andν = 10. The program ran withN= 50, and a time step size ofh= 5 with 0≤ t ≤ 100.
We compared the numerical solution att = 100 with the analytical solution, where it is observed that the numerical

solution attains a steady state. The maximum difference between the numerical solution and the analytic solution was about
0.003.

9 Numerical evidence that the numerical method is of order two
We have already indicated that the error produced by the timediscretization is of order 2. It also follows from error

bounds for cubic splines (see for example [14]), and error bounds for the trapezoidal rule for integration (see for example [4])



that the space discretization should also be of order 2. We have tested this numerically by performing the same computing
for various values ofM andN (or equivalently different values ofη andh).

The example computation we chose to use was the first example in Section 7, withL changed to 2π. The computations
were performed four times, with

(M,N) = (50×2r,10×2r), (r = 0,1,2,3) (133)

to produce solutions which we call respectivelyxr(s, t) (r = 0,1,2,3). We computed the root mean square differences

Errr,r+1(t) =

(∫ L

0
|xr(s, t)− xr+1(s, t)|2 ds

)1/2

, (r = 0,1,2) (134)

where the integrals were approximated by the trapezoidal rule.
If the numerical method is of orderµ, we would expect

Errr,r+1(t)
Errr+1,r+2(t)

≈ 2µ (135)

Figure 6 shows 4rErrr,r+1 for r = 0,1,2, and Figure 7 shows their ratios. These strongly suggests the numerical methods
converge with order at least 2.

10 Conclusion
In this paper, we have presented a robust and fast numerical scheme for simulating the dynamic behavior of elastica in

three dimensions. We have employed two sets of techniques:

1. We have used cubic splines for the space discretization. This has proven to be a good discretization. We believe that
this may be because the cubic spline is a first order approximation for elastica. It has also been computationally efficient
because cubic splines can be computed using tridiagonal matrices.

2. For the time discretization, we derived a numerical scheme that preserves the Hamiltonian. The scheme was derived
from the Lagrangian formulation of the dynamics, and the resulting scheme seems to be simpler to understand and
implement than other Hamiltonian preserving numerical schemes.

In a later work we plan to extend our work to include the effectof torsion and natural curvature. This will require
extending our Hamiltonian preserving scheme to allow quartic terms to appear in the Lagrangian.
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