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Abstract. We study evolutionary semigroups generated by a strongly
continuous semi-cocycle over a locally compact metric space acting
on Banach fibers. This setting simultaneously covers evolutionary
semigroups arising from nonautonomuous abstract Cauchy prob-
lems and C0-semigroups, and linear skew-product flows.

The spectral mapping theorem for these semigroups is proved.
The hyperbolicity of the semigroup is related to the exponential
dichotomy of the corresponding linear skew-product flow. To this
end a Banach algebra of weighted composition operators is stud-
ied. The results are applied in the study of: “roughness” of the di-
chotomy, dichotomy and solutions of nonhomogeneous equations,
Green’s function for a linear skew-product flow, “pointwise” di-
chotomy versus “global” dichotomy, and evolutionary semigroups
along trajectories of the flow.

1. Introduction

The spectral theory of linear skew-product flows (or processes) with

finite dimensional fibers is, by now, a well-developed area in asymp-

totics theory of differential equations (see, e.g., [14, 15, 20, 38, 46,

47, 49, 50]). J. Hale in [14, p.60] stressed that this theory should be

extended to the infinite dimensional setting. Indeed, in recent years

significant progress has been made in the study of linear skew-product

flows (LSPFs) with Banach fibers ([8, 9, 10, 28, 48]) over a compact
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metric space (see also [6, 7, 26]). An impressive list of possible appli-

cations can be found in [8, 14, 15, 16, 48].

In this paper we consider strongly continuous linear skew-product

semiflows on bundles with Banach fibers over a locally compact metric

space. Our philosophy is not to start with a pointwise construction of

stable and unstable foliations (as in [50, 8, 9, 28, 46, 48]), but instead to

begin by associating with the linear skew-product flow an evolutionary

semigroup of operators, {T t}t≥0, on the space of continuous sections of

the bundle. We prove two facts concerning the spectrum of this semi-

group that relate its spectral properties to the asymptotic properties

of the linear skew-product flow. The first of these facts is the Spectral

Mapping Theorem (Theorem 3.3) for {T t}t≥0 and its generator Γ,

etσ(Γ) = σ(T t)\{0}, t > 0,

while the second concerns the description of the spectral projections

(Theorem 4.1).

As a result of this approach, we not only answer questions concerning

LSPFs, but also address the theory of evolutionary semigroups associ-

ated with strongly continuous evolutionary families as studied in the

theory of nonautonomous Cauchy problems and the general theory of

C0 semigroups (see [12, 13, 18, 27, 33, 36, 42]). Consequently, classical

theorems on the exponential dichotomy of differential equations (see,

e.g., [11, 31]) can easily be extended to the case concerning differential

equations with unbounded coefficients. Some of the results appearing

here were announced in [23].

The connection between evolutionary semigroups and the dichotomy

of LSPFs is not new. In one of the first papers in this direction,

J. Mather [30] proved that the LSPF generated by the differential of a

diffeomorphism of a smooth manifold is Anosov (i.e., is hyperbolic or,

in the terminology of the present paper, exponentially dichotomic) if

and only if the corresponding evolutionary operator is hyperbolic (it’s

spectrum does not intersect the unit circle). This led to the notion of

the Mather spectrum M := σ(T ). Here T = T 1 and σ(·) denotes the

usual spectrum of an operator. This notion is widely used in the theory

of hyperbolic dynamical systems (see [40] for further references). The

articles [4, 19] proved the spectral mapping theorem for evolutionary

semigroups in the finite dimensional setting, and they described the
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spectral subbundles of these operators via the spectral subbundles of

the corresponding LSPF. Moreover, they related the spectrum of Γ to

the dynamical spectrum, Σ, of the LSPF, as defined by R. Sacker and

G. Sell in [47].

In the present paper we proceed in the opposite direction: we derive

the existence of spectral subbundles from the existence, and descrip-

tion, of the Riesz projections corresponding to T ; the properties of Σ

are described via the spectrum of the generator, σ(Γ). These techniques

build upon those used in [1] which addresses the finite dimensional set-

ting and uses some C∗-algebraic methods. These methods were also

used in [25] to prove the results for a uniformly continuous cocycle on

a Hilbert space. The results have recently been generalized in [43] to

the case involving a strongly continuous cocycle on a compact metric

space with Banach fibers. The important articles [43, 44, 45] linked

this theory with the theory of evolutionary semigroups associated with

strongly continuous evolutionary families (as initiated and developed

in [12, 13, 18, 27, 36]). As we will see below, the latter situation corre-

sponds to a LSPF over the translations of R; the evolutionary family

can be thought of as the propagator of a well-posed differential equation

on a Banach space [33, 34, 51]. For this situation, in the Banach space

setting, the Spectral Mapping Theorem has been proven in [22, 23]

(see [17],[33] and [39] for a general discussion on this theorem) and the

Spectral Projection Theorem in [22, 23, 24, 42, 44, 45].

The Spectral Mapping Theorem appearing in the present paper ap-

plies to any evolutionary semigroup associated with a LSPF over a

nonperiodic flow on a locally compact space, Θ, but it also provides a

new proof for semigroups arising from evolutionary families, i.e., when

Θ = R and the flow is translation on R. In fact, the same idea applies

to evolutionary semigroups in the space of divergence-free sections of

a bundle—a situation which is important for applications to hydro-

magnetodynamics [5]. Our proof of the Spectral Projection Theorem

for LSPFs also differs from that in [43]. Here, we extend the alge-

braic technique used in [1, 25] (for Hilbert spaces) so that it applies in

the general setting of Banach spaces. One advantage to this approach

is that we are able to discuss the case of “discrete” time t ∈ Z and

“pointwise dichotomies” (see Section 5; cf. [8]).
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We now make the previous discussion more explicit by establishing

some notation and outlining the main results.

For t ∈ R, let ϕt be a continuous flow on a locally compact metric

space Θ. Throughout the paper, the aperiodic trajectories of the flow

are assumed to be dense in Θ. Let X be a Banach space and let Ls(X)

be the space of bounded linear operators on X endowed strong-operator

topology. Let Φ : Θ×R+ → Ls(X) be a continuous (semi)cocycle over

ϕt. Since Θ is locally compact, we will allow Φ to grow at infinity

not faster then exponentially. The linear skew-product (semi)flow ϕ̂t

is defined by the following formula (see Section 2)

ϕ̂t : Θ×X → Θ×X, (θ, x) 7→ (ϕtθ,Φ(θ, t)x).

Example 1.1. As a very particular example, which will be referred as the

“norm continuous compact setting,” assume Θ is compact and A : Θ→
L(X) is a continuous operator-valued function. Then, for each θ ∈ Θ,

the operator Φ(θ, t) can be thought of as a solving operator for the

variational equation

dx

dt
= A(ϕtθ)x(t), θ ∈ Θ, t ∈ R. (1.1)

Here, Φ is uniformly continuous and takes invertible values in L(X).

Example 1.2. As another example (see also [10]), which will be re-

ferred to as the “norm continuous line setting,” assume Θ = R, and

let A : R→ L(X) be a bounded, continuous operator-valued function.

Let {U(τ, s)}τ≥s be the propagator of the nonautonomous differential

equation

dx

dt
= A(t)x(t), t ∈ R; (1.2)

that is, the solution x(·) of (1.2) satisfies x(τ) = U(τ, s)x(s). This can

be related to the previous example by defining Φ(θ, t) = U(θ + t, θ)

and identifying the flow as translation, ϕtθ = θ + t for θ ∈ Θ = R

and t ∈ R. Since the propagator U satisfies [11] the identity U(τ, s) =

U(τ, r)U(r, s), for τ ≥ r ≥ s, and U(s, s) = I, Φ is a cocycle over ϕt.

These two examples show (see also [10]) how both the variational

equation (1.1) and the nonautonomous equation (1.2) can be addressed

in terms of linear skew-product flows on a locally compact metric space.

We stress that the strongly continuous setting considered in the present

paper (as opposed to the norm continuous situation described above)
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allows one to study the equations (1.1) and (1.2) even in the situation

where the operators given by A(·) are unbounded.

Given a LSPF ϕ̂t, we associate to it a semigroup {T t}t≥0 of evolu-

tionary operators defined on C0(Θ, X), the space of strongly continuous

functions vanishing at infinity (with the sup-norm), by

(T tf)(θ) = Φ(ϕ−tθ, t)f(ϕ−tθ), θ ∈ Θ, f ∈ C0(Θ, X).

The generator of such a semigroup will be denoted by Γ. For the line

setting this semigroup becomes a well-known [12, 13, 18, 27, 34, 36, 44,

45] evolutionary semigroup:

(T tf)(τ) = U(τ, τ − t)f(τ − t), τ ∈ R, f ∈ C0(R, X).

The generator, Γ, of the evolutionary semigroups arising in the norm

continuous setting of examples 1.1 and 1.2 can be expressed, respec-

tively, as

(Γf)(θ) = − d

dt
f ◦ ϕt(θ)

∣∣∣∣∣
t=0

+A(θ)f(θ), and (Γf)(τ) = − df
dτ

+A(τ)f(τ).

A discussion on the delicate question about when these formulas hold

for the strongly continuous setting can be found in [34, 35]. If, for

the line setting, A0 ≡ A(τ) generates a C0 semigroup {etA0}t≥0, then

(T tf)(τ) = etA0f(τ − t) and Γ is the closure of −d/dt + A0. If Φ is

the differential of a diffeomorphism on a smooth manifold Θ, then T t

is the “push-forward” operator and Γ is the Lie derivative.

In Section 3, for the strongly continuous locally compact setting, we

prove the following theorem.

Spectral Mapping Theorem . The spectrum σ(Γ) is invariant with

respect to translations along the imaginary axis, and the spectrum σ(T t),

t > 0, is invariant with respect to rotations centered at origin. More-

over, σ(T t)\{0} = etσ(Γ).

The proof of this theorem develops some ideas from [30] on “local-

ization” of almost-eigenfunctions for evolutionary operators.

In Section 4 we discuss exponentially dichotomic LSPFs. The ter-

minology “exponential dichotomy,” as in [8] (see also [15, 16, 28, 48]),

refers to the existence of a strongly continuous, bounded projection-

valued function P : Θ→ Ls(X). This P (·) defines a ϕ̂t-invariant split-

ting Θ ×X = XP + XQ with uniform exponential decay of ΦP on XP
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and of Φ−1
Q on XQ, Q := I − P . The subscripts here denote the re-

strictions of the LSPF; since we do not assume that Φ is invertible, the

existence of Φ−1
Q is part of the definition of exponential dichotomy.

The main result in Section 4 is the following theorem where an oper-

ator T is called hyperbolic if σ(T )∩T = ∅. If T is hyperbolic, its Riesz

projection corresponding to σ(T ) ∩ D is denoted by P . (Here, T and

D denote the unit circle and unit disk in C.)

Spectral Projection Theorem . Assume T is hyperbolic. Then

its Riesz projection, P, is an operator of multiplication. That is, if

f ∈ C0(Θ, X), then (Pf)(θ) = P (θ)f(θ) for some strongly continuous

bounded projection-valued function P (·) : Θ→ Ls(X).

We use this theorem to show that the LSPF ϕ̂t has exponential di-

chotomy with P (·) if and only if T is hyperbolic, and we relate P (·)
with the Riesz projection for T , as above. The related result for com-

pact Θ was proved in [43] (see also [42, 44, 45] for Θ = R), where a

quite different method is used. We stress that our method also works

for “discrete” time t ∈ Z, that is, when ϕ is a homeomorphism, and

Φ : Θ× Z → Ls(X). For “continuous” time, t ∈ R, together with the

Spectral Mapping Theorem, this shows that the LSPF ϕ̂t has exponen-

tial dichotomy with P (·) if and only if Γ is invertible. This generalizes

some results in [3, 37]. In particular (see [22, 23]), for Θ = R and

A(τ) ≡ A0 this shows that the growth bound for any C0 semigroup

{etA0}t≥0 on X coincides with the spectral bound for −d/dt + A0 on

C0(R, X). A similar fact (see [22]) for Lp-spaces can be used in a variety

of contexts (cf. [32, 52]).

Our method of proof exploits the invertibility properties of a partic-

ular Banach algebra of weighted translation operators on C0(Θ, X). To

prove the Spectral Projection Theorem, we consider for each θ ∈ Θ a

weighted shift operator, πθ(T ), acting on the space `∞(Z, X) and given

by the diagonal matrix:

πθ(T ) = diag{Φ(ϕn−1θ, 1)}n∈ZS;

here, S denotes the shift operator on `∞(Z, X): (xn)n∈Z 7→ (xn−1)n∈Z.

The hyperbolicity of πθ(T ) is equivalent to the existence of the discrete

exponential dichotomy for ϕ̂t along the trajectory through θ. These

operators were, in fact, introduced in [16] for the line setting, and in
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[1, 8, 25] for the compact setting. A byproduct of our approach is the

following theorem.

Pointwise Dichotomy Theorem . The LSPF ϕ̂t has exponential

dichotomy on Θ if and only if πθ(T ) is hyperbolic for every θ ∈ Θ, and

sup{‖(λ− πθ(T ))−1‖ : λ ∈ T, θ ∈ Θ} <∞.

The theorems listed above help to unify a number of ideas concerning

“spectral properties” of dynamical systems. Recall that the dynamical

spectrum, Σ, for the LSPF ϕ̂t (see [47]) is the set of all λ ∈ R such

that the LSPF, ϕ̂tλ, corresponding to the cocycle e−λtΦ(θ, t) does not

have exponential dichotomy. The Bohl spectrum, B, for equation (1.1)

is the set of λ ∈ R such that the equation x′ = [A(τ) − λ]x does not

have exponential dichotomy (see [11]). Using the above theorems, one

can relate all of these sets (in the general strongly continuous, locally

compact setting) as follows:

Σ = B = lnM = σ(Γ) ∩ R = ln |σ(T ) \ {0}|. (1.3)

Finally, consider an autonomous equation x′(t) = A0x(t), t ∈ R,

where A0 generates a C0 semigroup, {etA0}t≥0. Assume, in addition,

that the spectral mapping theorem is valid for {etA0}t≥0. This happens,

e.g., if A0 is a sectorial operator (see [33] for a detailed discussion).

Then each of the sets in (1.3) coincides with {z + iξ : z ∈ σ(A0), ξ ∈
R} ∩ R. If X is a Hilbert space and A0 is self-adjoint, then the last

set is just σ(A0). This shows that for abstract Cauchy problems for

nonautonomous differential equations and for LSPFs in Banach spaces,

the spectrum of Γ should play the same role as the spectrum of A0 for

autonomous equations.

In Section 5 we give several consequences of the results mentioned

above. The list of these topics includes: “roughness” of the dichotomy,

dichotomy and solutions of nonhomogenious equations (1.1)–(1.2), Green’s

function for a LSPF, “pointwise” dichotomy versus “global” dichotomy,

and evolutionary semigroups along trajectories of the flow. The paper

concludes by listing several open problems.

The following notation is used throughout the paper: Θ denotes a

locally compact metric space; for θ ∈ Θ and δ > 0, B(θ, δ) denotes an

open ball of radius δ centered at θ. For any Banach space X, L(X)

denotes the space of bounded linear operators on X, and Ls(X) denotes
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this space endowed with the strong-operator topology. For any operator

A on X, its domain is denoted by D(A) and its spectrum by σ(A). In

C, let T = {z : |z| = 1}, and D = {z : |z| ≤ 1}. For a set of operators

d(n), n ∈ Z, in L(X), diag{d(n)}n∈Z acts on `∞(Z, X) as the infinite

matrix consisting of diagonal entries d(n). For a projection P (or P , or

a projection-valued function P (·)), we use the letter Q (respectively,

Q, Q(·)) to denote the complementary projection: Q = I − P .

2. Evolutionary Semigroups: Preliminaries

2.1. Evolutionary semigroups. Let ϕt be a continuous flow on Θ,

and let Φ: Θ × R+ → L(X) be a strongly continuous, exponentially

bounded cocycle over ϕt. That is, we assume the function

(θ, t) 7→ Φ(θ, t)x

to be continuous from Θ × R+ to X for each x ∈ X, and there exist

C, ω > 0 such that for every θ ∈ Θ,

a) Φ(θ, t+ s) = Φ(ϕtθ, s)Φ(θ, t) for t, s >≥ 0;

b) Φ(θ, 0) = I;

c) ‖Φ(θ, t)‖L(X) ≤ Ceωt for all t ∈ R+.

Note that the operators Φ(θ, t) are not assumed to be invertible. The

last inequality holds automatically if Θ is compact.

The linear skew-product flow (LSPF) associated with Φ is the map

ϕ̂t : Θ×X → Θ×X, ϕ̂t(θ, x) = (ϕtθ,Φ(θ, t)x), t ≥ 0.
(2.1)

We note that for exponentially bounded cocycles, the map ϕ̂t is con-

tinuous if and only if the corresponding cocycle is strongly continuous.

To a cocycle Φ over a flow ϕt, one can associate the family of oper-

ators {T t}t≥0 in B(C0(Θ, X)) defined by

(T tf)(θ) = Φ(ϕ−tθ, t)f(ϕ−tθ), θ ∈ Θ, f ∈ C0(Θ, X).
(2.2)

It’s easy to check that this defines a semigroup of operators: T t+s =

T tT s, T 0 = I. As noted below, this evolutionary semigroup is a strongly

continuous semigroup on C0(Θ, X) if and only if Φ is a strongly contin-

uous, exponentially bounded cocycle. The generator will be denoted

by Γ.
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Theorem 2.1. {T t}t≥0, as defined in (2.2), is a C0 semigroup on

C0(Θ, X) if and only if Φ is an exponentially bounded, strongly contin-

uous cocycle.

Proof. If Φ is a strongly continuous cocycle with ‖Φ(θ, t)‖ ≤ Ceωt for

some C, ω > 0, then {T t}t≥0 can be seen to be strongly continuous as

in [25] or [43].

Conversely, assume {T t}t≥0 is a C0 semigroup. Clearly, Φ is expo-

nentially bounded. Fix θ0 ∈ Θ, t0 ∈ R, and x ∈ X. Let ε > 0. For

θ ∈ Θ, and t ∈ R, consider

‖Φ(θ, t)x− Φ(θ0, t0)x‖ ≤ ‖Φ(θ0, t)x− Φ(θ0, t)x‖+ ‖Φ(θ0, t)x− Φ(ϕt−t0θ0, t0)x‖
+ ‖Φ(ϕt−t0θ0, t0)x− Φ(θ0, t0)x‖. (2.3)

Let D be a compact set in Θ containing θ0 in its interior. Choose

α : Θ → [0, 1] with compact support such that α(θ) = 1 for all θ ∈ D.

Define f ∈ C0(Θ, X) as f(θ) = α(θ)x, and note that for θ ∈ D and

t ∈ R,

Φ(θ, t)x = (T tf)(ϕtθ).

First consider the middle term on the right-hand side of (2.3) and

choose δ1 > 0 such that ϕt−t0θ0 ∈ D for all |t − t0| < δ1. Choose

δ2 ∈ (0, δ1] such that |t − t0| < δ2 implies ‖T tf − T t0f‖ ≤ ε/3. Then

for |t− t0| < δ2,

‖Φ(θ0, t)x− Φ(ϕt−t0θ0, t0)x‖ = ‖(T tf)(ϕtθ0)− (T t0f)(ϕt0(ϕt−t0θ0))‖
= ‖(T tf)(ϕtθ0)− (T t0f)(ϕtθ0)‖
≤ sup

θ∈Θ
‖T tf(θ)− T t0f(θ)‖ < ε/3.

Secondly, since T tf is continuous, there exists δ′ > 0 such that

d(θ1, θ2) < δ′ implies ‖T t0f(θ1) − T t0f(θ2)‖ < ε/3. Since t 7→ ϕtθ0

is continuous, there exists δ3 ∈ (0, δ2] such that |t − t0| < δ3 implies

d(ϕtθ0, ϕ
t0θ0) < δ′. Then, |t− t0| < δ3 implies

‖Φ(ϕt−t0θ0, t0)x− Φ(θ0, t0)x‖ = ‖T t0f(ϕt0(ϕt−t0θ0))− T t0f(ϕt0θ0)‖
= ‖T t0f(ϕtθ0)− T t0f(ϕt0θ0)‖ < ε/3.

Finally, choose δ′′ > 0 so that B(θ0, δ
′′) ⊂ D, and θ ∈ B(θ0, δ

′′)

implies

‖(T tf)(ϕtθ)− (T tf)(ϕtθ0)‖ < ε/3.
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We note that δ′′ = δ′′(t) depends on t, but on the compact interval

[t0 − δ3, t0 + δ3], the map t 7→ T tf(ϕt· ) is uniformly continuous, so

δ′′ may be chosen independent of t. Therefore, if |t − t0| < δ3 and

θ ∈ B(θ0, δ
′′), then (2.3) shows that ‖Φ(θ, t)x− Φ(θ0, t0)x‖ < ε. �

2.2. Examples. We give several examples of cocycles and correspond-

ing evolutionary semigroups.

Example 2.2. Norm continuous compact setting. Let ϕt be a continuous

flow on a compact metric space Θ, and let A : Θ → L(X) be (norm)

continuous. For each θ ∈ Θ consider the equation

dx

dt
= A(ϕtθ)x(t), θ ∈ Θ, t ∈ R. (2.4)

Let Φ(θ, t), t ∈ R, be the solving operator for (2.4): x(t) = Φ(θ, t)x(0).

Then Φ is a cocycle and A(θ) =
d

dt
Φ(θ, t)

∣∣∣∣∣
t=0

. Denote (df)(θ) =

d

dt
f ◦ ϕt(θ)

∣∣∣∣∣
t=0

. The generator Γ of the group (2.2) is given as follows:

(Γf)(θ) = −(df)(θ) + A(θ)f(θ), (2.5)

and its domain D(Γ) is, in this case, D(Γ) = {f ∈ C0(Θ, X) : df ∈
C0(Θ, X)}.

Equations of the type (2.4) arise from two sources. Firstly, they

can be thought of as a linearization of a nonlinear equation in X in

the vicinity of a compact invariant set Θ for the nonlinear equation.

Secondly, Θ might be a compact hull, Θ = closure{a( · + τ) : τ ∈ R},
of a given function a : R→ L(X) (see [14, 46]).

Example 2.3. Strongly continuous compact setting. We now allow the

operatorsA(θ) in (2.4) to be unbounded. A strongly continuous (semi)cocycle

Φ is said to solve (2.4) if: For every θ ∈ Θ and every xθ ∈ D(A(θ))

the function t 7→ x(t) := Φ(θ, t)xθ is differentiable for t > 0, x(t) ∈
D(A(ϕtθ)), and x(·) satisfies (2.4). By Theorem 2.1 the cocycle gener-

ates an evolutionary semigroup given by (2.2).

This setting might occur if, after the linearization of a nonlinear

equation in X, the Frechet derivative A(θ) is an unbounded operator.

Numerous examples of this strongly continuous setting can be found

in [8].
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Example 2.4. To be more specific, in the setting of Example 2.3, assume

A(θ) ≡ A0, θ ∈ Θ, where A0 generates a C0 semigroup {etA0}t≥0 on

X. The cocycle Φ for (2.4) is Φ(θ, t) = etA0 . In the tensor product

C0(Θ, X) = C0(Θ,R)
⊗
X one can express the evolutionary semigroup

defined in (2.2) by T t = V t⊗ etA0 , where V tf := f ◦ ϕ−t. Then (see,

e.g., [33, p. 23]) the generator Γ0 of {T t}t≥0 is the closure of the operator

Γ′0f = −df + A0f with

D(Γ′0) = {f ∈ C0(Θ, X) : df ∈ C0(Θ, X), f : Θ→ D(A0), df − A0f ∈ C0(Θ, X)}.

Example 2.5. Suppose, in the setting of Example 2.3, that

A(θ) = A0 + A1(θ), θ ∈ Θ, (2.6)

where A0 is a generator of a C0 semigroup {etA0}t≥0 on X and A1 :

Θ → Ls(X) is (strongly) continuous and bounded on Θ. Note that

A1(·) defines an operator A1 ∈ B(C0(Θ, X)) by the rule (A1f)(θ) =

A1(θ)f(θ). For Γ0 as in Example 2.4 we have:

Proposition 2.6. Assume that there exists a strongly continuous co-

cycle Φ that solves (2.4) with A(·) as in (2.6). Then the generator Γ

of the evolutionary semigroup (2.2) is given by

(Γf)(θ) = −(df)(θ) + A0f(θ) + A1(θ)f(θ), D(Γ) = D(Γ0).
(2.7)

Proof. Since Φ defines a classical solution of (2.4)–(2.6), Φ also is a

mild solution of (2.4), that is, Φ satisfies

Φ(θ, t)x = etA0x+

t∫
0

e(t−τ)A0A1(ϕτθ)Φ(θ, τ)x dτ, (2.8)

for x ∈ X, θ ∈ Θ, t ≥ 0. (We point out the interesting Theorem 5.1

in [10] where the existence of a mild solution Φ was proved for any

equations (2.4)–(2.6).)

Since Γ0 generates a C0 semigroup, and A1 ∈ B(C0(Θ, X)), the op-

erator Γ = Γ0 +A1 also generates (see, e.g., [39, p. 77]) a C0 semigroup,

{St}t≥0, which is the unique solution of the integral equation

Stf = etΓ0f +

t∫
0

e(t−τ)Γ0A1S
τf dτ, f ∈ C0(Θ, X), t ≥ 0.

(2.9)
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We show that St = T t. Indeed, for f ∈ C0(Θ, X) define g =
t∫

0
e(t−τ)Γ0A1T

τf dτ .

Then (2.8) implies

g(θ) =

t∫
0

e(t−τ)A0A1(ϕτ (ϕ−tθ))Φ(ϕ−tθ, τ)f(ϕ−tθ) dτ

= Φ(ϕ−tθ, t)f(ϕ−tθ)− etA0f(ϕ−tθ)

= (T tf)(θ)−
(
etΓ0f

)
(θ).

Therefore, {T t}t≥0 satisfies (2.9), and so T t = St. The generator,

Γ = Γ0 +A1, of this semigroup is given by (2.7). �

Example 2.7. Norm continuous line setting. Let Θ = R, and assume

A : R→ L(X) is a bounded continuous function. Let U(τ, s), τ, s ∈ R,

denote the propagator for the equation

dx

dt
= A(t)x(t), t ∈ R. (2.10)

This means that the solution x(·) of (2.10) satisfies x(τ) = U(τ, s)x(s).

Denote ϕt(τ) = τ + t and Φ(τ, t) = U(τ + t, τ), for τ, t ∈ R (cf.

[10]). Then Φ is a cocycle. In this case, the group (2.2) is given by

(T tf)(τ) = U(τ, τ − t)f(τ − t), f ∈ C0(R, X), and the generator Γ is

given by the formula:

(Γf)(τ) = − df
dτ

+A(τ)f(τ), D(Γ) = {f ∈ C0(R, X) : f ′ ∈ C0(R, X)}.

Example 2.8. Strongly continuous line setting. In the case of Θ =

R, consider a well-posed differential equation (2.10) with, generally,

unbounded operators A(τ). Let {U(t, s)}t≥s be the associated strongly

continuous evolutionary family of operators in L(X). This means that

(τ, s) 7→ U(τ, s)x is continuous for each x ∈ X, U(τ, s) = U(τ, r)U(r, s)

for τ ≥ r ≥ s, U(s, s) = I, and ‖U(τ, s)‖ ≤ Ceω(τ−s) for some C, ω > 0.

The flow ϕt, the cocycle Φ, and the evolutionary semigroup can be

defined exactly as in the previous example. If, in particular, A(τ) ≡ A0

is a generator of a C0 semigroup {etA0}t≥0 onX, then U(τ, s) = e(τ−s)A0 ,

and Γ is the closure of

Γ′ = − d

dt
+A0, D(Γ′) = {f ∈ C0(R, X) : f ′+A0f ∈ C0(R, X), f : R→ D(A0)}.

For Θ = R consider now the case where each of the operators A(t),

t ∈ R in (2.10) is an (unbounded) operator on X with dense domain.
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For each t ∈ R, denote the domain of A(t) by Dt := D(A(t)). Consider

the following nonautonomous abstract Cauchy problem (cf. [34]):

dx

dt
= A(t)x(t) for t ≥ s ∈ R, and x(s) = xs,

(2.11)

where xs ∈ Ds, s ∈ R. We say (see [34]) that the evolutionary family

{U(τ, s)}τ≥s solves (2.11) if x(·) = U(· , s)xs is a unique solution of

(2.11) for every xs ∈ Ds, that is x(·) is differentiable, x(t) ∈ Dt for

t ≥ s, and (2.11) holds.

Proposition 2.9. Assume that a strongly continuous evolutionary fam-

ily {U(τ, s)}τ≥s solves (2.11). Then the generator Γ of the evolutionary

semigroup (T tf)(τ) = U(τ, τ − t)f(τ − t) on C0(R, X) is the closure

of the operator Γ′, with domain consisting of differentiable functions f

such that f(t) ∈ Dt and Γ′f ∈ C0(R, X), defined as follows:

(Γ′f)(τ) = − df
dτ

+ A(τ)f(τ), τ ∈ R. (2.12)

Proof. Fix s ∈ R and xs ∈ Ds. For any smooth α : R → R with

compact support suppα ⊂ [s,∞), consider a function f ∈ C0(R, X),

defined by

f(τ) = α(τ)U(τ, s)xs for τ > s and f(τ) = 0 for τ ≤ s.
(2.13)

Then Γf = Γ′f . Indeed

(T tf)(τ) = α(τ − t)U(τ, τ − t)U(τ − t, s)xs = α(τ − t)U(τ, s)xs

for τ − t > s, and zero otherwise. Hence,

d

dt
(T tf)(τ)

∣∣∣∣∣
t=0

= −α′(τ)U(τ, s)xs, τ ∈ R.

On the other hand, since τ 7→ U(τ, s)xs satisfies (2.11), one has:

df

dτ
= α′(τ)U(τ, s)xs+α(τ)

d

dτ
U(τ, s)xs = α′(τ)U(τ, s)xs+α(τ)A(τ)U(τ, s)xs.

To finish the proof, we need to show that linear combinations of

functions f , as in (2.13), are dense in C0(R, X). To see this, first

observe that the set of finite sums
∑
βjvj with arbitrary vj ∈ X and

smooth βj : R→ R with compact support, is dense in C0(R, X).
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Now, consider any function g = βv with fixed v ∈ X and smooth

β : R→ R with compact support. We show that g can be approximated

by a sum of functions f as in (2.13).

To see that, fix ε > 0. For every τ0 ∈ supp β, the map (τ, s) 7→
U(τ, s)v, τ ≥ s is continuous at the point (τ0, τ0) by the definition

of {U(τ, s)}. Hence, there exist s0 ≤ s′0 such that for the interval

I0 = I(τ0) := (s0, s
′
0), containing τ0, one has ‖U(τ, s0)v − v‖ ≤ ε/2 for

τ ∈ I0. Thus, we obtain an open covering of supp β, formed by I(τ0),

τ0 ∈ supp β. Take a finite subcovering {Ij}nj=1. For Ij := (sj, s
′
j), one

has ‖U(τ, sj)v − v‖ ≤ ε/2 for τ ∈ Ij, j = 1, . . . , n.

Consider a smooth partition of unity {γj}nj=1 for {Ij}nj=1, that is,

smooth functions γj : R→ [0, 1] such that

n∑
j=1

γj(τ) = 1 for τ ∈ supp β, and supp γj ⊂ Ij, j = 1, . . . , n.

Since the Dsj are dense in X, one can choose vj ∈ Dsj such that

‖v − vj‖ ≤ ε/2.

Define the function

h(τ) :=
n∑
j=1

β(τ)γj(τ)U(τ, sj)vj, τ ∈ R.

Since supp γj ⊂ (sj, s
′
j), the function h is a sum of functions f as in

(2.13). Also,

‖g(τ)− h(τ)‖ =

∥∥∥∥∥∥β(τ)
n∑
j=1

γj(τ)v −
n∑
j=1

β(τ)γj(τ)U(τ, sj)vj

∥∥∥∥∥∥
≤ |β(τ)|

 n∑
j=1

γj(τ)‖v − vj‖+
n∑
j=1

γj(τ)‖vj − U(τ, sj)vj‖


≤ εmax

τ
|β(τ)|,

and the proof is completed. �

2.3. An algebra of weighted translation operators. In Section 4

we study the spectrum of T = T 1, that is, the invertibility of b =

λI−T . This operator belongs to an algebra, B, of weighted translation

operators which we now define.

Let Cb(Θ;Ls(X)) denote the set of strongly continuous and bounded

functions a : Θ→ Ls(X). For a ∈ Cb(Θ,Ls(X)), set ‖a‖u := supθ∈Θ ‖a(θ)‖L(X).



EVOLUTIONARY SEMIGROUPS AND DICHOTOMY OF LSPF 15

Such a function induces a multiplication operator on C0(Θ, X) de-

fined by (Maf)(θ) = a(θ)f(θ). The mapping a 7→ Ma is an isome-

try from the Banach space Cb(Θ,Ls(X)) to B(C0(Θ, X)) and so the

operator Ma will be denoted simply by a, its norm given by ‖a‖ =

‖a‖B(C0(Θ,X)) = ‖a‖u. Let A denote the set of all such multiplication

operators a = Ma ∈ B(C0(Θ, X)).

Now let ϕ = ϕ1 be a homeomorphism on Θ. Denote by V the

translation operator on C0(Θ, X) given by (V f)(θ) = f(ϕ−1θ). Define

B to be the set of all operators b ∈ B(C0(Θ, X)) such that

b =
∞∑

k=−∞
akV

k, where ak ∈ A, and ‖b‖1 :=
∞∑

k=−∞
‖ak‖ <∞.

(2.14)

Proposition 2.10. If the set of aperiodic points of ϕ is dense in Θ,

then the representation (2.14) of an element b ∈ B is unique.

Proof. This follows from the observation that for any polynomial bN =∑N
k=−N akV

k in B(C0(Θ, X)), where ak ∈ A and N ∈ N,

‖bN‖B(C0(Θ,X)) ≥ ‖ak‖B(C0(Θ,X)), |k| ≤ N. (2.15)

To prove (2.15), first note that by replacing b by bV −k it suffices to con-

sider only the case k = 0. Fix ε > 0. For a ∈ A, ‖a‖B(C0(Θ,X)) = sup
θ∈Θ

sup
‖x‖X=1

‖a(θ)x‖X ,

so there exists a nonperiodic point θ0 of {ϕt}t∈R, and a x ∈ X, ‖x‖ = 1,

such that

‖a0(θ0)x‖X ≥ ‖a0‖B(C0(Θ,X)) − ε.
Choose δ > 0 such that for B = B(θ0, δ), ϕ

k(B) ∩ ϕj(B) = ∅ for

k 6= j, |k|, |j| ≤ N . Choose a continuous function α : Θ → [0, 1] such

that α(θ0) = 1 and α(θ) = 0 for θ /∈ B. Define f ∈ C0(Θ, X) by

f(θ) =

α(ϕ−kθ)x, if θ ∈ ϕk(B), |k| ≤ N

0 otherwise.

Then ‖f‖C0(Θ,X) = 1 and

‖b‖B(C0(Θ,X)) ≥ ‖bf‖C0(Θ,X) = max
θ∈Θ

∥∥∥∥∥∥
N∑

k=−N
ak(θ)α(ϕ−kθ)x

∥∥∥∥∥∥
X

= max
θ∈Θ

max
|k|≤N

‖ak(θ)α(ϕ−kθ)x‖X ≥ ‖a0(θ0)x‖X

≥ ‖a0‖B(C0(Θ,X)) − ε.
�
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Proposition 2.11. (B, ‖ · ‖1) is a Banach algebra.

Proof. The norm ‖ · ‖1 is an algebra norm. To see that it is complete,

consider a ‖ · ‖1-Cauchy sequence {b(n)}∞n=1 in B, b(n) =
∞∑

k=−∞
a

(n)
k V k.

Set ak = ‖ · ‖1- lim
m→∞

a
(m)
k , k ∈ Z. For every m,n in Z,∣∣∣∣∣∣

∞∑
k=−∞

‖a(m)
k ‖ −

∞∑
k=−∞

‖a(n)
k ‖

∣∣∣∣∣∣ ≤ ‖b(m) − b(n)‖1.

So a sequence (‖a(m)
k ‖)k∈Z ∈ `1(Z,R) converges to (‖ak‖)k∈Z in `1(Z,R).

Hence b =
∑
k akV

k is an element of B. For every ε > 0 and for

sufficiently large m,n, the inequality

ε ≥ ‖b(m) − b(n)‖1 =
∞∑

k=−∞
‖a(m)

k − a(n)
k ‖ ≥

N∑
k=−N

‖a(m)
k − a(n)

k ‖

holds for every N ∈ N. Taking the limit as n→∞, and then the limit

as N →∞ shows ‖b(m) − b‖1 → 0. �

In Section 4, we consider the relationship between the invertibility

of a weighted translation operator b in B and a family of representa-

tions (weighted shift operators), πθ(b), in B(`∞(Z, X)). To define the

representation πθ of B, denote by S the shift operator on `∞(Z, X):

S : (xn)n∈Z 7→ (xn−1)n∈Z, (xn)n∈Z ∈ `∞(Z, X).

For a ∈ A and θ ∈ Θ, let πθ(a) = diag{a(ϕnθ)}n∈Z. Defining πθ(aV ) =

πθ(a)S gives a continuous homomorphism from B into B(`∞(Z, X)):

for b =
∑
k akS

k in B,

πθ(b) =
∞∑

k=−∞
πθ(ak)S

k. (2.16)

With this in mind, let C denote the set of operators in B(`∞(Z, X))

of the form d = diag{d(n)}n∈Z, where d(n) ∈ L(X), and consider the

Banach algebra (D, ‖ · ‖1) of operators on `∞(Z, X) of the form

d =
∞∑

k=−∞
dkS

k where dk ∈ C, and ‖d‖1 :=
∞∑

k=−∞
‖dk‖B(`∞(Z,X)) <∞.

The following lemma points out, in particular, that D is an inverse-

closed subalgebra of B(`∞(Z, X)). The proof follows exactly as in

Lemma 1.6 and Remark 1.7 of [24].
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Proposition 2.12. Let d(θ) =
∞∑

k=−∞
dk(θ)S

k be an operator in D, and

assume that
∞∑

k=−∞
sup
θ∈Θ
‖dk(θ)‖B(`∞(Z,X)) <∞.

If d(θ)−1 ∈ B(`∞(Z, X))) for each θ ∈ Θ and if for some C > 0,

sup
θ∈Θ
‖d(θ)−1‖B(`∞(Z,X)) < C,

then d(θ)−1 ∈ D for each θ ∈ Θ. Moreover, if d(θ)−1 =
∞∑

k=−∞
ck(θ)S

k,

then
∞∑

k=−∞
sup
θ∈Θ
‖ck(θ)‖B(`∞(Z,X)) <∞.

3. Spectral Mapping Theorem

In this section we prove that the spectral mapping property

etσ(Γ) = σ(T t)\{0}, t > 0, (3.1)

holds for any evolutionary semigroup (2.2) with generator Γ. As usual,

the nonperiodic points of {ϕt}t∈R are assumed to be dense in Θ. For a

general C0 semigroup {T t}t≥0 generated by an operator Γ, the spectral

inclusion etσ(Γ) ⊆ σ(T t)\{0} is well known, as are examples showing

that the inclusion is, in general, proper. Moreover, equality holds for

the point spectrum and residual spectrum [33], so to prove (3.1) we fo-

cus on the approximate point spectrum, σap(·). By a standard rescaling

technique [33], it suffices to consider only T = T 1.

We build on the ideas of [30] and observe, in particular, that the

ε-eigenfunctions of T obey the following “localization” principle: if

1 ∈ σap(T ), then for every N ∈ N, there exists a point θ0 ∈ Θ, a

function f ∈ C0(Θ, X) with ‖f‖ = 1, and an open neighborhood D of

θ0 such that supp f ⊆ ∪2N
j=0ϕ

j(D) and ‖Tf − f‖ = O( 1
N

). Using f , we

construct a function g ∈ C0(Θ, X) such that ‖Γg‖ = O( 1
N

)‖g‖, hence

showing that 0 ∈ σap(Γ).

Before beginning the proof of (3.1), we prove two technical lemmas

which verify the existence of an appropriate f ∈ C0(Θ, X) and aid in

the subsequent construction of g, as described above.
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Lemma 3.1. Let A ∈ L(X) and assume 1 ∈ σap(A). For each N ≥ 2,

there exists x ∈ X, ‖x‖ = 1, such that

a) ‖ANx− x‖X ≤ 1
8
;

b) ‖Akx‖X ≤ 2 for k = 0, 1, . . . , 2N .

Proof. Set c =
∑2N
k=0 ‖A‖k. From the identity Ak − I = (Ak−1 + . . . +

A+ I)(A− I), for k = 2, . . . , 2N , it follows that for any x ∈ X,

‖(Ak − I)x‖ ≤ c‖(A− I)x‖, k = 0, 1, . . . , 2N. (3.2)

Since 1 ∈ σap(A), there exists a x ∈ X, ‖x‖ = 1, such that ‖(A−I)x‖ ≤
1
8c

. Set k = N in (3.2) to obtain a). Moreover, (3.2) shows that for

k = 0, 1, . . . , 2N ,

‖Akx‖ ≤ ‖(Ak − I)x‖+ ‖x‖ ≤ c‖(A− I)x‖+ 1 ≤ c
1

8c
+ 1 ≤ 2.

�

Now let θ0 ∈ Θ be a nonperiodic point of ϕt, and fix s ∈ (0, 1) and

N ≥ 2. If B is a neighborhood of θ0, then for θ ∈ Θ we use the notation

R(θ) = {t ∈ R : |t| ≤ N, ϕtx ∈ B}. Lebesgue measure on R will be

denoted by m.

Lemma 3.2. There exists a sufficiently small open neighborhood, B,

of θ0 and a continuous “bump” function α : Θ→ [0, 1] such that:

a) α(ϕtθ0) = 1, for |t| ≤ s
4
;

b) α(ϕtθ0) = 0, for s ≤ |t| ≤ 2N ;

c) m(R(θ)) ≤ 2s, for all θ ∈ Θ.

For the important case Θ = R with ϕtθ = θ+t, this is trivial: for any

θ0 ∈ R take B = (θ0 − s, θ0 + s), and α : R → [0, 1] with suppα ⊂ B

and α(θ) = 1 for x ∈ (θ0 − s/4, θ0 + s/4).

Proof. We begin with:

Claim 1 . For sufficiently small ε∗ > 0, and all ε ≤ ε∗, if δ < ε, then

θ ∈ B′ := B(θ0, δ) implies ϕtθ /∈ B′ provided s
2
≤ |t| ≤ 5N .

Proof of Claim 1. Suppose, to the contrary, that there exists a se-

quence δn ↓ 0 such that for some θn ∈ Bn := B(θ0, δn) and some

tn with s
2
≤ |tn| ≤ 5N , one has ϕtnθn ∈ Bn. Passing to a subsequence,

one can assume tn → t∗ for some t∗ with s
2
≤ |t∗| ≤ 5N . Since the

map (θ, t) 7→ ϕtθ from Θ × R to Θ is continuous at the point (θ0, t∗),

and since θn ∈ Bn, it follows that θn → θ0. Thus tn → t∗ implies
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ϕtnθn → ϕt∗θ0. On the other hand, ϕtnθn ∈ Bn implies ϕtnθn → θ0, as

tn → t∗. But then ϕt∗θ0 = θ0, which contradicts the assumption that

θ0 is a nonperiodic point of ϕt. This proves Claim 1. �

Now let δ < ε∗, and set B′ = B(θ0, δ) as in Claim 1. Choose an open

neighborhood B′′ of θ0 such that B′′ ⊂ B′. Denote:

B :=
⋃
|t|≤ s

4

ϕt(B′), C :=
⋃
|t|≤ s

4

ϕt(B′′). (3.3)

Since C ⊂ B, there exists a continuous α : Θ→ [0, 1] such that α(θ) = 1

for θ ∈ C, and α(θ) = 0 for θ /∈ B.

Note that since θ0 ∈ B′′, it follows that {ϕtθ0 : |t| ≤ s
4
} ⊂ C and so

α(ϕtθ0) = 1 whenever |t| ≤ s
4
. This proves a).

To prove b) we first prove

Claim 2 . If θ ∈ B and if s ≤ |t| ≤ 2N , then ϕtθ /∈ B.

Proof of Claim 2. Suppose, to the contrary, that there exists a θ ∈ B
and a t∗ ∈ R satisfying s ≤ |t∗| ≤ 2N and ϕt∗θ ∈ B. By the definition

(3.3) of B, there exist θ1 and θ2 in B′ such that

θ = ϕt1θ1 and ϕt∗θ = ϕt2θ2,

for some numbers t1, t2 with |t1|, |t2| ≤
s

4
. This implies

ϕt∗+t1−t2θ1 ∈ B′. (3.4)

Note that

|t∗ + t1 − t2| ≤ 2N +
s

4
+
s

4
≤ 5N

and

|t∗ + t1 − t2| ≥ |t∗| − |t1| − |t2| ≥ s− s

4
− s

4
=
s

2
,

and so (3.4) contradicts Claim 1. This proves Claim 2. �

Since, in particular, θ0 ∈ B and α(θ) = 0 for θ /∈ B, Claim 2 proves

part b) of the lemma.

To prove c), fix θ1 ∈ Θ and denote the orbit by O(θ1) = {ϕtθ1 : |t| ≤
N}. Clearly, m(R(θ1)) = 0 provided O(θ1) ∩ B = ∅, so consider the

case O(θ1) ∩ B 6= ∅. Fix any θ ∈ O(θ1) ∩ B. Then θ = ϕt1θ1 for some

t1 with |t1| ≤ N . Further, for any t∗ ∈ R(θ1), one has |t∗ − t1| ≤ 2N

and

ϕt∗θ1 = ϕt∗−t1θ ∈ B. (3.5)



20 Y. LATUSHKIN, S. MONTGOMERY-SMITH, AND T. RANDOLPH

Since θ ∈ B, Claim 2 shows that (3.5) can only hold provided |t∗−t1| <
s, that is, t∗ ∈ (t1− s, t1 + s). Since t∗ was chosen arbitrarily in R(θ1),

this showsR(θ1) ⊆ (t1−s, t1+s). Thus, m(R(θ1)) ≤ 2s. This completes

the proof of the lemma. �

We now proceed with the proof of the Spectral Mapping Theorem.

Theorem 3.3. Let Γ be the generator of the evolutionary semigroup

(2.2). Then

etσ(Γ) = σ(T t) \ {0}, t > 0. (3.1)

Moreover, the spectrum σ(Γ) is invariant with respect to translations

along the imaginary axis, and the spectrum σ(T t), t > 0, is invariant

with respect to rotations centered at origin.

Proof. As noted in the beginning of this section, to prove (3.1) it suffices

to show: 1 ∈ σap(T ) implies 0 ∈ σap(Γ). In fact, we show that σap(Γ)

contains the entire imaginary axis whenever 1 ∈ σap(T ). Since σap(Γ)

contains the boundary of σ(Γ), all assertions of the theorem follow from

this.

Let 1 ∈ σap(T ), and let ξ ∈ R. We begin by using Lemma 3.1 with

A = T to obtain, for any N ≥ 2, a function f ∈ C0(Θ, X) satisfying:

(3.6a) ‖f‖C0(Θ,X) = 1;

(3.6b) ‖TNf − f‖C0(Θ,X) ≤ 1
8
;

(3.6c) ‖T kf‖C0(Θ,X) ≤ 2, for k = 0, 1, . . . , 2N .

For this f , fix s ∈ (0, 1) such that

‖T t+Nf − TNf‖C0(Θ,X) ≤
1

16
, for |t| ≤ s, (3.7)

and at the same time

|e−iξt − 1| ≤ 1

32
, for |t| ≤ s. (3.8)

With the goal of constructing an approximate eigenfunction g, for Γ,

corresponding to iξ, choose a smooth function γ : R→ [0, 1] such that:

(3.9a) γ(t) = 0, for t /∈ (0, 2N);

(3.9b) |γ′(t)| ≤ 2
N
, for all t ∈ R;

(3.9c) γ(t) = 1, for |t−N | ≤ s.

Now fix θ0 ∈ Θ, a nonperiodic point of ϕt which satisfies

‖f(θ0)‖ ≥ 7

8
‖f‖C0(Θ,X) =

7

8
. (3.10)
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Set θN := ϕ−Nθ0, and use Lemma 3.2 to obtain an open neighborhood,

B, of θN and a “bump”function α with the properties a) − c) listed

there. Define g ∈ C0(Θ, X) by

g(θ) =
∫ ∞
−∞

e−iξtγ(t)(T tαf)(θ) dt, θ ∈ Θ. (3.11)

Note that due to (3.9a), the integration goes from 0 to 2N . Also, note

that

Γg = iξg −
∫ ∞
−∞

e−iξtγ′(t)(T tαf) dt.

Indeed,

Γg =
d

dτ

∣∣∣∣∣
τ=0

T τg =
d

dτ

∣∣∣∣∣
τ=0

∫ ∞
−∞

e−iξtγ(t)(T t+ταf) dt

=
d

dτ

∣∣∣∣∣
τ=0

∫ ∞
−∞

e−iξ(t−τ)γ(t− τ)(T tαf) dt

=
∫ ∞
−∞

[
iξe−iξtγ(t)(T tαf)− e−iξtγ′(t)(T tαf)

]
dt.

We now proceed to show that ‖Γg− iξ‖ = O( 1
N

)‖g‖ with the follow-

ing two claims.

Claim 1 . Set C := max
0≤t≤1

‖T t‖L(X). Then ‖Γg − iξg‖C0(Θ,X) ≤
8Cs

N
.

Proof of Claim 1. First use (3.9a) and (3.9b) to obtain

‖Γg − iξg‖ =

∥∥∥∥∥−
∫ 2N

0
e−iξtγ′(t)α(ϕ−t·)T tf(·) dt

∥∥∥∥∥
≤ 2

N
· max

0≤t≤2N
‖T tf‖ ·max

x∈Θ

∫ 2N

0
α(ϕ−tθ) dt. (3.12)

Using (3.6c), note that

max
0≤t≤2N

‖T tf‖ ≤ max
0≤k≤2N

max
0≤τ≤1

‖T τT kf‖ ≤ 2C. (3.13)

Also, the change of variable t 7→ −t+N gives

max
x∈Θ

∫ 2N

0
α(ϕ−tθ) dt = max

x∈Θ

∫ N

−N
α(ϕt(ϕ−Nθ)) dt = max

x∈Θ

∫ N

−N
α(ϕtθ) dt.

Now, for fixed θ ∈ Θ, recall from Lemma 3.2 that the set R(θ) = {t ∈
R : |t| ≤ N, ϕtθ ∈ B} has measure m(R(θ)) ≤ 2s. Consider |t| ≤ N ;

then α(ϕtθ) ≤ 1 for t ∈ R(θ), and α(ϕtθ) = 0 for t /∈ R(θ), and so

max
θ∈Θ

∫ N

−N
α(ϕtθ) dt ≤ max

θ∈Θ

∫
R(θ)

dt ≤ 2s. (3.14)
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Using (3.13) and (3.14) in the inequality (3.12) gives

‖Γg − iξg‖ ≤ 2

N
· 2C · 2s =

8Cs

N
.

This proves Claim 1. �

Claim 2 . ‖g‖C0(Θ,X) ≥
s

128
.

Proof of Claim 2. Recall θN = ϕ−Nθ0. Using (3.9a) and a change of

variable t 7→ t+N gives:

g(θ0) =
∫ 2N

0
e−iξtγ(t)α(ϕ−tθ0)(T tf)(θ0) dt

=
∫ N

−N
e−iξ(t+N)γ(t+N)α(ϕ−tθN)(T t+Nf)(θ0) dt.

And so, Lemma 3.2 b) and (3.9c) show that

g(θ0) =
∫ s

−s
e−iξ(t+N)γ(t+N)α(ϕ−tθN)(T t+Nf)(θ0) dt

= e−iξN
∫ s

−s
e−iξtα(ϕ−tθN)(T t+Nf)(θ0) dt

= e−iξN(I1 + I2 + I3),

where we have denoted for brevity:

I1 = f(θ0)
∫ s

−s
e−iξtα(ϕ−tθN) dt,

I2 = (TN − I)f(θ0)
∫ s

−s
e−iξtα(ϕ−tθN) dt,

I3 =
∫ s

−s
e−iξtα(ϕ−tθN)[(T t+N − TN)f ](θ0) dt.

It follows from Lemma 3.2 a) (and recall 0 ≤ α(θ) ≤ 1), and (3.8) and

(3.10) that

‖I1‖ = ‖f(θ0)‖
∣∣∣∣∫ s

−s
e−iξtα(ϕ−tθN) dt

∣∣∣∣
≥ ‖f(θ0)‖

(∣∣∣∣∫ s

−s
α(ϕ−tθN) dt

∣∣∣∣− ∣∣∣∣∫ s

−s
(e−iξt − 1)α(ϕ−tθN) dt

∣∣∣∣)
≥ ‖f(θ0)‖

(∣∣∣∣∣
∫ − s

4

s
4

α(ϕ−tθN) dt

∣∣∣∣∣−
∫ s

−s

∣∣∣(e−iξt − 1)
∣∣∣ dt)

≥ ‖f(θ0)‖
(
s

2
− 1

32
2s
)
≥ 7

8

(
7s

16

)
=

49s

128
.
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On the other hand, (3.6b) and (3.7) show that

‖I2‖ ≤
∥∥∥(TN − I)f

∥∥∥ ∣∣∣∣∫ s

−s
e−iξtα(ϕ−tθN) dt

∣∣∣∣ ≤ 1

8
2s =

s

4
,

‖I3‖ ≤
∫ s

−s

∣∣∣e−iξtα(ϕ−tθ0)
∣∣∣ ∥∥∥(T t+N − TN)f

∥∥∥ dt ≤ 1

16
2s =

s

8
.

As a result,

‖g‖ ≥ ‖g(θ0)‖ = ‖I1+I2+I3‖ ≥ ‖I1‖−‖I2‖−‖I3‖ ≥
49s

128
−s

4
−s

8
=

s

128
.

This proves Claim 2. �

Returning to the proof of the theorem, we combine Claim 1 with

Claim 2 to obtain

‖Γg − iξg‖ ≤ 8Cs

N
≤ 8C

N
· 128‖g‖.

Since N ≥ 2 was arbitrary, this shows iξ ∈ σap(Γ). �

4. Exponential Dichotomy

Let {T t}t≥0 be an evolutionary semigroup (2.2). In this section, we

relate the hyperbolicity of the weighted translation operator T = T 1 =

aV , where a(θ) = Φ(ϕ−1θ, 1), to the exponential dichotomy of the

LSPF ϕ̂t. One can assume in this section, that t ∈ Z.

We also relate the hyperbolicity of T to the hyperbolicity of weighted

shift operators πθ(T ), θ ∈ Θ. The representation πθ of B was intro-

duced in Section 2 (see (2.16)). For each θ ∈ Θ, the weighted shift

operator πθ(T ) acts on `∞(Z, X) by the rule

πθ(T ) = diag{Φ(ϕn−1θ, 1)}n∈ZS, where S : (xn)n∈Z 7→ (xn−1)n∈Z.

It is useful to make the observation that for k ∈ Z,

πθ(T
k) = [πθ(T )]k = diag{Φ(ϕn−kθ, k)}n∈ZSk = Sk diag{Φ(ϕnθ, k)}n∈Z.

(4.1)

For x̄ = (xn)n∈Z, and ȳ = (yn)n∈Z in `∞(Z, X), note that the equation

[I − πθ(T )]x̄ = ȳ can be expressed componentwise as

xn+1 − Φ(ϕnθ, 1)xn = yn+1, n ∈ Z.

As seen in Section 5.4 (see also [25, Prop. 3.22]), the hyperbolicity

of πθ(T ) is equivalent to the existence of exponential dichotomy for ϕ̂t

along the orbit through θ, i.e., “pointwise” dichotomy (see [16, Theorem

7.6.5] and [8]).
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We begin with the definition of exponential dichotomy on Θ (or

“global” dichotomy [8, 9, 16, 15, 28, 48]).

Definition 4.1. A linear skew product flow ϕ̂t has exponential di-

chotomy on Θ if there exists a continuous projection P : Θ → Ls(X)

such that for θ ∈ Θ and t ≥ 0,

a) P (ϕtθ)Φ(θ, t) = Φ(θ, t)P (θ);

b) ΦQ(θ, t) is invertible from ImQ(θ) to ImQ(ϕtθ);

c) there exist constants M , β > 0 such that for t > 0

‖ΦP (θ, t)‖ ≤Me−βt, ‖[ΦQ(θ, t)]−1‖ ≤Me−βt.

If a projection P : Θ→ L(X) and a cocycle Φ satisfy a), above, then

ΦP (θ, t) and ΦQ(θ, t) will be used to denote the restrictions Φ(θ, t)P (θ) : ImP (θ)→
ImP (ϕtθ) and Φ(θ, t)Q(θ) : ImQ(θ)→ ImQ(ϕtθ), respectively.

The main result of this section follows. As usual, the set of nonperi-

odic points of ϕt is assumed to be dense in Θ.

Theorem 4.1. The following are equivalent:

i) σ(T ) ∩ T = ∅ in C0(Θ, X);

ii) σ(πθ(T ))∩T = ∅, on `∞(Z, X), for all θ ∈ Θ and there exists

a constant C > 0, such that

‖[πθ(T )− λI]−1‖B(`∞(Z,X)) ≤ C for all θ ∈ Θ, λ ∈ T;
(4.2)

iii) The LSPF ϕ̂t has exponential dichotomy.

We note (see Remark 3 in Section 5.6) that condition (4.2) often

follows automatically from σ(πθ(T )) ∩ T = ∅, θ ∈ Θ. For results

related to i)⇔ iii), see [42, 43, 44, 45] where a quite different method

was used.

We begin the proof of the theorem with an observation about the

operators πθ(T ).

Proposition 4.2. σ(πθ(T )) is invariant with respect to rotations cen-

tered at the origin. Moreover, for σ(πθ(T )) ∩ T = ∅,

‖[λ− πθ(T )]−1‖B(`∞(Z,X)) = ‖[I − πθ(T )]−1‖B(`∞(Z,X)), λ ∈ T.

Proof. For ω ∈ T, define Λ = diag{ωn}n∈Z. Then Λ is an invertible

operator on `∞(Z, X), and

Λπθ(λ− T )Λ−1 = λ− ω diag{a(ϕnθ)}n∈ZS = ω(ω−1λ− πθ(T )).
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Hence, ‖[λ− πθ(T )]−1‖ = ‖[ω−1λ− πθ(T )]−1‖ and the proposition fol-

lows. �

As a result, statement ii) in Theorem 4.1 can be replaced by the

statement

ii′) I−πθ(T ) is invertible for all θ ∈ Θ, and there exists C > 0 such

that ‖[I − πθ(T )]−1‖B(`∞(Z,X)) ≤ C for all θ ∈ Θ.

The proof of Theorem 4.1 will follow from a series of lemmas.

The Proof of i)⇒ ii′) is given by the following lemma.

Lemma 4.3. If b = I − T is an invertible operator on C0(Θ, X), then

πθ(b) is invertible on `∞(Z, X) for all θ ∈ Θ. Moreover,

‖[πθ(b)]−1‖B(`∞(Z,X)) ≤ ‖b−1‖B(C0(Θ,X))

for all θ ∈ Θ.

Proof. We first show that πθ(b) is injective, uniformly for θ ∈ Θ, by

showing that for any x̄ ∈ `∞(Z, X),

‖πθ(b)x̄‖`∞(Z,X) ≥ (‖b−1‖B(C0(Θ,X)))
−1‖x̄‖`∞(Z,X). (4.3)

It suffices to prove (4.3) for finitely supported x̄ = (xn)Nn=−N .

Let θ0 ∈ Θ be a nonperiodic point of ϕt. Let ε > 0. Since θ 7→ a(θ)x

is continuous for all x ∈ X, there exists δ > 0 such that for B :=

B(θ0, δ),

θ ∈ B implies ‖[a(θ0)− a(θ)]xn‖X < ε, for all |n| ≤ N.
(4.4)

Moreover, δ can be chosen so that, in addition,

ϕn(B) ∩ ϕk(B) = ∅ for all k 6= n, |n|, |k| ≤ N.

Choose a continuous function α : Θ → [0, 1] such that α(θ0) = 1, and

α(θ) = 0 for θ /∈ B. Define f ∈ C0(Θ, X) by

f(θ) =

α(ϕ−nθ)xn, if θ ∈ ϕn(B), |n| ≤ N

0, otherwise.

Since b−1 ∈ B(C0(Θ, X)), we have

‖b−1‖ · ‖bf‖ ≥ ‖f‖C0(Θ,X) = sup
θ∈Θ
‖f(θ)‖X = ‖x̄‖`∞(Z,X).

(4.5)
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Also, since f(ϕ−1θ) = α(ϕ−nθ)xn−1 for θ ∈ ϕn(B), |n| ≤ N , and

f(ϕ−1θ) = 0 otherwise, we have

‖bf‖C0(Θ,X) = sup
θ∈Θ
‖f(θ)− a(θ)f(ϕ−1θ)‖X

= sup
|n|≤N

sup
θ∈Θ
‖α(ϕ−nθ)xn − a(θ)α(ϕ−nθ)xn−1‖X

≤ sup
|n|≤N

sup
θ∈Θ
‖xn − a(ϕnθ)xn−1‖X

≤ sup
|n|≤N

sup
θ∈Θ
{‖xn − a(ϕnθ0)xn−1‖X + ‖a(ϕnθ0)xn−1 − a(ϕnθ)xn−1‖X}

< ‖πθ0(b)x̄‖`∞(Z,X) + ε,

using (4.4) in the last inequality. So,

‖bf‖C0(Θ,X) ≤ ‖πθ0(b)x̄‖`∞(Z,X). (4.6)

Combining (4.5) and (4.6) shows

‖πθ0(b)x̄‖`∞(Z,X) ≥ ‖bf‖C0(Θ,X) ≥
1

‖b−1‖B(C0(Θ,X))

‖x̄‖`∞(Z,X).

We have shown that (4.3) holds for all nonperiodic points of ϕt. If θ0

is a periodic point of ϕt, then choose a sequence of nonperiodic points

{θk}∞k=1 in Θ converging to θ0. Since the map θ 7→ πθ(b)x̄ is continuous,

(4.3) holds, and hence πθ(b) is uniformly injective for all θ ∈ Θ.

We now check that πθ(b) is surjective for all θ ∈ Θ. Let x̄ ∈ `∞(Z, X).

As before, consider x̄ = (xn)Nn=−N . First suppose θ0 is a nonperiodic

point of ϕt. Define f ∈ C0(Θ, X) as above and note that since b is

surjective, there exists a g ∈ C0(Θ, X) such that bg = f ; that is,

g(θ)− a(θ)g(ϕ−1θ) = f(θ) for all θ ∈ Θ.

Substituting θ = ϕnθ0 into this equation and defining ȳ ∈ `∞(Z, X) by

yn = g(ϕnθ0) for |n| ≤ N , gives πθ0(b)ȳ = x̄.

To address the case for which θ0 is a periodic point of ϕt, so that

ϕkθ0 = θ0 for some k ∈ Z, we begin with

Case k = 1 . Assume ϕθ0 = θ0. If T = aV is hyperbolic on C0(Θ, X),

then πθ0(T ) = diag{a(θ0)}n∈ZS is hyperbolic on `∞(Z, X).

Proof. By hypothesis, I−aV is surjective on C0(Θ, X), and so I−a(θ0)

is surjective on X. Indeed, given x ∈ X, choose f ∈ C0(Θ, X) with

f(θ0) = x and then choose g ∈ C0(Θ, X) so that (I − aV )g = f ;

setting y = g(θ0) gives (I − a(θ0))y = x. Therefore, a(θ0) is hyperbolic
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on X. As in Lemma 2.4 of [22], this implies that diag{a(θ0)}n∈ZS is

hyperbolic on `∞(Z, X).

Case k > 1 . Assume ϕkθ0 = θ0. If T is hyperbolic on C0(Θ, X), then

πθ0(T ) is hyperbolic on `∞(Z, X).

Proof. By standard spectral properties, it suffices to consider hyper-

bolicity for T k. First note (see (4.1)) that

πθ0(T k) = Sk diag{Φ(ϕnθ0, k)}n∈Z.

This can be expressed as the operator

Ŝ diag{d}n∈Z, on `∞(Z, Xk) ≈ `∞(Z, X), (4.7)

where Ŝ, on `∞(Z, Xk), and d, on Xk, are defined as
xn+1

...
xn+k


n∈Z

7→


xn+k+1

...
xn+2k


n∈Z

and d =


Φ(θ0, k)

. . .

Φ(ϕk−1θ0, k)

 .
As in Lemma 2.4 of [22], (4.7) is hyperbolic on `∞(Z, Xk) provided d is

hyperbolic onXk. Therefore, it suffices to show that Φ(θ0, k), . . . ,Φ(ϕk−1θ0, k)

are hyperbolic on X. Applying Case k = 1 with φ := ϕk and the rep-

resentation πθ,φ : a 7→ diag{a(φ−nθ)}n∈Z shows that

πθ0,φ(T k) = Sk diag{Φ(ϕknθ0, k)}n∈Z = Sk diag{Φ(θ0, k)}n∈Z
is hyperbolic. As before, expressing this operator as Ŝ diag{Φ(θ0, k)}n∈Z
on `∞(Z, Xk) and applying Lemma 2.4 of [22] shows that Φ(θ0, k) is

hyperbolic. This proves the case k > 1 �

Thus, the lemma is proved. �

The Proof of ii) ⇒ i) requires showing that the invertibility of b

in B can be derived from the invertibility of all its images πθ(b) in

B(`∞(Z, X)). To do this, we consider the algebra D of operators in

B(`∞(Z, X)) as defined in Section 2. The next lemma proves a slightly

stronger statement than ii)⇒ i).

Lemma 4.4. Let b = λI−T . Assume πθ(b) is invertible in B(`∞(Z, X))

and that there exists a C > 0 such that

‖[πθ(b)]−1‖B(`∞(Z,X)) ≤ C for all θ ∈ Θ.

Then b−1 exists and is an element of B.
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Proof. Let b = I−T ; the proof remains the same for b = λI−T , λ ∈ T.

Using the notation of Proposition 2.12, set d(θ) := πθ(b) = I − πθ(a)S.

Since supθ∈Θ ‖a(θ)‖L(X) <∞, it follows that∑
k

sup
θ∈Θ
‖dk(θ)‖B(`∞(Z,X)) = 1 + sup

θ∈Θ
‖πθ(a)‖B(`∞(Z,X)) <∞,

and hence d(θ) satisfies the conditions of Proposition 2.12. Conse-

quently, for each θ, πθ(b) = d(θ) has an inverse that is in D:

[πθ(b)]
−1 =

∞∑
k=−∞

ck(θ)S
k, for some ck(θ) = diag{c(n)

k (θ)}n∈Z in C, k ∈ Z.

Moreover, since supθ∈Θ ‖πθ(b)‖B(`∞(Z,X)) ≤ C, Proposition 2.12, shows

that ∑
k

sup
θ∈Θ
‖ck(θ)‖B(`∞(Z,X)) <∞.

The lemma is proved by showing that for each k ∈ Z,

θ 7→ c
(0)
k (θ) is a continuous, bounded function from Θ→ Ls(X),

(4.8)

(in the notation of Section 2, c
(0)
k ∈ A) and then showing that the

operator r :=
∑∞
k=−∞ c

(0)
k V k is in B and satisfies r = b−1.

Let k ∈ Z, and fix x ∈ X and θ0 ∈ Θ. Define x̄ = (xn)n∈Z in

`∞(Z, X) by xn = x if n = −k, and xn = 0 if n 6= −k. Then for any

θ ∈ Θ,

‖[c(0)
k (θ)− c(0)

k (θ0)]x‖X =

∥∥∥∥∥∥
∞∑

j=−∞
[c

(0)
j (θ)− c(0)

j (θ0)]x−j

∥∥∥∥∥∥
X

≤ sup
n∈Z

∥∥∥∥∥∥
∞∑

j=−∞
[c

(n)
j (θ)− c(n)

j (θ0)]xn−j

∥∥∥∥∥∥
X

=

∥∥∥∥∥∥
 ∞∑
j=−∞

diag{c(n)
j (θ)− c(n)

j (θ0)}n∈ZSj
 x̄

∥∥∥∥∥∥
`∞(Z,X)

=

∥∥∥∥∥∥
 ∞∑
j=−∞

[cj(θ)− cj(θ0)]Sj

 x̄
∥∥∥∥∥∥
`∞(Z,X)

=
∥∥∥[πθ(b)]−1[πθ0(b)− πθ(b)][πθ0(b)]−1x̄

∥∥∥
`∞(Z,X)

≤ C ‖[πθ0(b)− πθ(b)]ȳ‖`∞(Z,X) ,
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where the last inequality comes from letting ȳ = [πθ0(b)]−1x̄ and us-

ing the assumption ‖[πθ(b)]−1‖ ≤ C. Since the map θ 7→ πθ(b)ȳ is

continuous for any ȳ ∈ `∞(Z, X), c
(0)
k is continuous at θ0.

Moreover, note that ck(θ) = diag{c(n)
k (θ)}n∈Z satisfies, for each n ∈

Z, the inequality

‖ck(θ)‖B(`∞(Z,X)) ≥ ‖c(n)
k (θ)‖L(X).

Therefore,
∑
k supθ∈Θ ‖ck(θ)‖B(`∞(Z,X)) <∞ implies, in particular, that

supθ∈Θ ‖c
(0)
k (θ)‖L(X) < ∞, and so each c

(0)
k is bounded. Thus, (4.8)

holds.

Also, since ‖c(0)
k ‖B(C0(Θ,X)) = supθ∈Θ ‖c

(0)
k (θ)‖L(X), it follows that

∞∑
k=−∞

‖c(0)
k ‖B(C0(Θ,X)) =

∞∑
k=−∞

sup
θ∈Θ
‖c(0)
k (θ)‖L(X) ≤

∞∑
k=−∞

sup
θ∈Θ
‖ck(θ)‖B(`∞(Z,X)) <∞.

Therefore, the operator r :=
∑∞
k=−∞ c

(0)
k V k is in B.

Now observe that

c
(n)
k (θ) = c

(0)
k (ϕnθ), n ∈ Z. (4.9)

Indeed, for any n ∈ Z, πθ(a)Sn = Snπϕnθ(a), and so

πϕnθ(b) = I − diag{a(ϕn+kθ)}k∈ZS = S−nπθ(b)S
n.

Therefore,

[πϕnθ(b)]
−1 = S−n[πθ(b)]

−1Sn = S−n

 ∞∑
k=−∞

diag{c(i)
k (θ)}i∈ZSk

Sn
=

∞∑
k=−∞

diag{c(i+n)
k (θ)}i∈ZSk.

On the other hand,

[πϕnθ(b)]
−1 =

∞∑
k=−∞

ck(ϕ
nθ)Sk =

∞∑
k=−∞

diag{c(i)
k (ϕnθ)}i∈ZSk,

so (4.9) holds.

As a consequence, rb = br = I. Indeed, using (4.9),

πθ(r) =
∞∑

k=−∞
πθ(c

(0)
k )Sk =

∞∑
k=−∞

diag{c(0)
k (ϕnθ)}n∈ZSk

=
∞∑

k=−∞
diag{c(n)

k (θ)}n∈ZSk =
∞∑

k=−∞
ck(θ)S

k = [πθ(b)]
−1.
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Therefore, I = πθ(r)πθ(b) = πθ(rb), and so πθ(rb − I) = 0 for all θ.

One checks directly that for πθ : B → D,
⋂
θ∈Θ Ker πθ = {0} and so

rb = I. �

The proof i)⇒ iii) uses the following corollary to Lemma 4.4.

Corollary 4.5. If σ(T ) ∩ T = ∅, then the Riesz projection, P, corre-

sponding to σ(T ) ∩ D has the form Pf(θ) = P (θ)f(θ), f ∈ C0(Θ, X),

for some bounded, continuous projection-valued function P : Θ →
Ls(X).

Proof. If σ(T ) ∩ T = ∅, then statement ii) of Theorem 4.1 holds, and

so Lemma 4.4 applies and shows (λI − T )−1 is in B for all λ ∈ T.

Consequently, P = 1
2πi

∫
T
(λI −T )−1 dλ is an element of B. Proceeding

exactly as in [25] or [21, Lemma 3], one can show that P ∈ A. �

Before proceeding, we make an additional observation.

Proposition 4.6. Assume σ(T ) ∩ T = ∅, and let P be the Riesz

projection corresponding to σ(T ) ∩ D, where Pf(θ) = P (θ)f(θ), as

above. Then the Riesz projection Pθ in B(`∞(Z, X)) corresponding to

σ(πθ(T )) ∩ D is given by

πθ(P) = diag{P (ϕnθ)}n∈Z.

Proof. As in the previous corollary, P ∈ B. Moreover, πθ((λI−T )−1) =

[λI−πθ(T )]−1 is in D, for λ ∈ T, and the Riesz projection corresponding

to σ(πθ(T )) ∩ D, given by Pθ = 1
2πi

∫
T
[λI − πθ(T )]−1 dλ, is in D. Since

πθ : B → D is a continuous homomorphism, Pθ = πθ(P). Since P is

given by P (·), if follows that Pθ = πθ(P) = diag{P (ϕnθ)}n∈Z. �

The Proof of i)⇒ iii) is a consequence of the next lemma.

Lemma 4.7. If σ(T ) ∩ T = ∅, then the LSPF ϕ̂t has exponential

dichotomy.

Proof. Let P be the Riesz projection corresponding to σ(T ) ∩ D. By

Corollary 4.5, P is given by (Pf)(θ) = P (θ)f(θ) for some projection-

valued function P : Θ→ X. We show that P satisfies the properties of

Definition 4.1. As already shown, the statement σ(T ) ∩ T = ∅ implies

statement ii) of Theorem 4.1. We use the latter to show that Φ(θ, t) is

invertible as an operator from ImQ(θ) to ImQ(ϕtθ).
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Fix θ ∈ Θ. Statement ii) implies that πθ(T )∩T = ∅, and Proposition

4.6 shows that the corresponding Riesz projection is given by Pθ =

πθ(P) = diag{P (ϕnθ)}n∈Z. Set Qθ = I − Pθ, and let k ∈ Z. Since

πθ(T )Qθ is invertible on ImQθ, so is [πθ(T )Qθ]k = πθ(T
k)Qθ. Hence,

for any ȳ = (yn)n∈Z ∈ ImQθ, there exists a unique x̄ = (xn)n∈Z ∈ ImQθ
such that (see (4.1))

{Φ(ϕn−kθ, k)xn−k}n∈Z = πθ(T
k)x̄ = ȳ.

The fact ȳ ∈ ImQθ means precisely that yn ∈ ImQ(ϕnθ) for every

n ∈ Z. So fix y ∈ ImQ(ϕkθ) and define ȳ by yn = y for n = k, and

yn = 0, for n 6= k. There exists a unique x̄ ∈ ImQθ such that

Φ(ϕn−kθ, k)xn−k = yn, n ∈ Z.

In particular, for n = k, Φ(θ, n)x0 = y. This shows that Φ(θ, n) is

invertible from ImQ(θ) to ImQ(ϕnθ) for all θ ∈ Θ, n ∈ Z.

To see that Φ(θ, t) is invertible for all t ∈ R, fix t and choose n ∈ Z
such that t ∈ [n, n+ 1). Since Φ(θ, n) is invertible, the identity

Φ(θ, t) = Φ(ϕnθ, t− n)Φ(θ, n)

shows that it suffices to prove Φ(ϕnθ, t − n) is invertible. But the

identities

Φ(ϕnθ, 1) = Φ(ϕtθ, n+ 1− t)Φ(ϕnθ, t− n)

Φ(ϕt−1θ, 1) = Φ(ϕnθ, t− n)Φ(ϕt−1θ, n− (t− 1))

show, respectively, that Φ(ϕnθ, t − n) has a left and a right inverse.

Hence Φ(θ, t) is invertible from ImQ(θ) to ImQ(ϕtθ).

Part b) for t ∈ Z+ follows from (4.1) and the fact that πθ(T )P =

πθ(T )P . As in [25, Prop. 3.10], the statement is seen to hold for t ∈ R+.

Finally, since σ(T t) ∩ T = ∅, there exist M,β > 0 such that

sup
t∈R
‖Φ(θ, t)P (θ)‖L(X) = ‖PT tP‖B(C0(Θ,X)) ≤Me−βt.

The first inequality in Definition 4.1 c) follows. The second inequality

is shown similarly. �

The Proof of iii) ⇒ i) is trivial. This completes the proof of Theo-

rem 4.1.

Let us make the following observation concerning the dynamical

spectrum, Σ (see the Introduction for the definition). As a result of

Theorem 4.1 and Corollary 4.5, the dynamical spectrum Σ coincides
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with ln |σ(T ) \ {0}|. An application of Theorem 3.3 gives the formula

(1.3) in the introduction. Also, the spectral subbundles for ϕ̂t are de-

termined by the spectral projections for T .

5. Consequences

In this section we formulate a variety of consequences which follow,

almost immediately, from the results of the previous sections.

5.1. Invertibility of Γ. An immediate consequence of the Theorem 3.3

and Theorem 4.1 ( see i)⇔ iii)) is the fact that a LSPF has exponential

dichotomy if and only if the spectrum of the generator Γ of the corre-

sponding evolutionary semigroup (2.2) satisfies σ(Γ) ∩ iR = ∅. Since

σ(Γ) is invariant with respect to translations along iR, we conclude:

Corollary 5.1. The LSPF ϕ̂t has exponential dichotomy if and only

if Γ is invertible.

Now recall that in the norm continuous compact setting, the gen-

erator of the evolutionary semigroup is given by (2.5). Consequently,

the LSPF generated by the cocycle in Example 2.2 is hyperbolic if and

only if the equation

d

dt
f ◦ ϕt(θ)

∣∣∣∣∣
t=0

− A(θ)f(θ) = g(θ)

has a unique solution f for every g ∈ C0(Θ, X).

Applying Corollary 5.1 to Example 2.8, we note that an evolutionary

family {U(τ, s)}, τ ≥ s has exponential dichotomy if and only if Γ is

invertible on C0(R, X) (cf. [22, 23, 24]). In the special case where

A(τ) ≡ A0 generates a C0 semigroup {etA0}t≥0 on X (here, U(τ, s) =

e(τ−s)A0), this gives a result from [41]: a C0 semigroup {etA0}t≥0 is

hyperbolic if and only if the equation f ′ − A0f = g has a unique

solution for every g ∈ C0(R, X).

On the other hand, for the norm continuous line setting (Exam-

ple 2.7), we conclude that (2.10) has exponential dichotomy if and

only if Γ = −d/dt+A(·) is invertible [3, 37], or, equivalently, the equa-

tion f ′(t) − A(t)f(t) = g(t), t ∈ R, has a unique solution for every

g ∈ C0(R, X) (see [11, 31]).
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5.2. Roughness of the dichotomy. In this subsection we give a very

short proof of the facts that the exponential dichotomy persists under

small perturbations.

Theorem 5.2. Assume that the LSPF ϕ̂t1 over the flow ϕt generated by

a cocycle Φ1(θ, t) has exponential dichotomy. Then there exists ε > 0

such that for every cocycle Φ2(θ, t) satisfying

sup
θ∈Θ
‖Φ1(θ, 1)− Φ2(θ, 1)‖L(X) < ε, (5.1)

the LSPF ϕ̂t2 over ϕt generated by Φ2(θ, t) also has the exponential

dichotomy.

Proof. By Theorem 4.1, i)⇔ iii), the operator T1, (T1f)(θ) = Φ1(ϕ−1θ, 1)f(ϕ−1θ),

is hyperbolic in C0(Θ, X). Note that for (T2f)(θ) = Φ2(ϕ−1θ, 1)f(ϕ−1θ),

‖T1 − T2‖B(C0(Θ,X)) = sup
‖f‖C0(Θ,X)=1

∥∥∥[Φ1(ϕ−1· , 1)− Φ2(ϕ−1· , 1)
]
f(ϕ−1· )

∥∥∥
C0(Θ,X)

≤ sup
θ∈Θ
‖Φ1(θ, 1)− Φ2(θ, 1)‖L(X).

For sufficiently small ε > 0, (5.1) implies σ(T2) ∩ T = ∅. �

¿From Corollary 5.1 we derive the following.

Corollary 5.3. Let ϕ̂t1 and ϕ̂t2 be two LSPFs over ϕt, and let Γ1 and

Γ2 denote the respective generators of the corresponding evolutionary

semigroups (2.2). If ϕ̂t1 has exponential dichotomy, then there exists

ε > 0, ε = ε(ϕ̂t1) such that ‖Γ1−Γ2‖ < ε implies ϕ̂t2 also has exponential

dichotomy.

Since the “typical” generator Γ for a variational equation (2.4) has

the form (2.5), this can be used when the unbounded operators A(θ)

are perturbed by bounded operators such that Γ1 − Γ2 is bounded.

For the strongly continuous setting, we have the following roughness

result (cf. [38]) for the variational equation in Example 2.5. Recall

that in that example the generator of the evolutionary semigroup is

identified in (2.7).

Corollary 5.4. Let A0 be a generator of a C0 semigroup {etA0}t≥0 on

X, and assume A1 and A2 : Θ → Ls(X) be bounded and continuous.

Consider the equations:

dx

dt
= A0x(t)+A1(ϕtθ)x(t),

dx

dt
= A0x(t)+A2(ϕtθ)x(t), θ ∈ Θ, t ∈ R
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(see (2.4)–(2.6)). Assume that the LSPF ϕ̂t1 over ϕt generated by the

first equation has exponential dichotomy. Then there exists ε > 0,

ε = ε(ϕ̂t1) such that ‖A1(θ)− A2(θ)‖ < ε implies the LSPF ϕ̂t2 over ϕt

generated by the second equation has exponential dichotomy, provided

the both cocycles are strongly continuous.

This gives an alternate way of addressing the situation of Theo-

rem 5.2 in [8].

5.3. Green’s function. We describe the existence of exponential di-

chotomy for ϕ̂t in terms of the existence and uniqueness of a Green’s

function. Let P : Θ → Ls(X) be a bounded continuous projection-

valued function that satisfies the following properties for θ ∈ Θ and

t > 0:

a) Φ(θ, t)P (θ) = P (ϕtθ)Φ(θ, t);

b) Φ(θ, t) is invertible as an operator from ImQ(θ) to ImQ(ϕtθ).

Define

G(θ, t) =

ΦP (θ, t), t > 0

ΦQ(θ, t), t < 0.
(5.2)

Here we have denoted:

ΦP (θ, t) = P (ϕtθ)Φ(θ, t)P (θ) for t > 0

ΦQ(θ, t) =
[
Q(ϕ−tθ)Φ(θ,−t)Q(θ)

]−1
for t < 0,

and used a) and b).

Definition 5.1. We say that the LSPF ϕ̂t has a Green’s function if

there exists a bounded continuous projection P : Θ → Ls(X), such

that for G from (5.2) the operator

(Ĝf)(θ) =
∫ ∞
−∞

G(ϕ−tθ, t)f(ϕ−tθ) dt, θ ∈ Θ, (5.3)

is bounded on C0(Θ, X).

The following result generalizes [49] (see also [21]).

Theorem 5.5. The LSPF ϕ̂t has exponential dichotomy if and only if

the Green’s function exists and is unique.

Proof. For every P (·) satisfying a)-b), define P ∈ B(C0(Θ, X)) by

Pf(θ) = P (θ)f(θ), and set Q = I − P. Then P commutes with
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T t, and T tQ ≡ QT tQ is invertible in ImQ. We note that (5.3) can be

rewritten as Ĝ = −G̃, where

G̃f =
∫ ∞

0
T−tQ f dt−

∫ ∞
0

T tQf dt. (5.4)

If Γ denotes the generator of T t, then the Spectral Mapping Theorem,

3.3, shows that Γ−1 ∈ B(C0(Θ, X)) if and only if T t is hyperbolic.

Assume the Green’s function, G, exists and is unique. Then G̃ is

bounded. By [24, Lemma 4.2] then Γ is invertible and Γ−1 = G̃. Since

T t is hyperbolic, i)⇒ iii) of Theorem 4.1 shows that ϕ̂t has exponential

dichotomy.

Conversely, assume ϕ̂t has exponential dichotomy. Then T t is hy-

perbolic with Riesz projection P = P (·). By [2] this projection is

unique. The standard norm-estimates in (5.4) shows that G̃ and Ĝ are

bounded. �

5.4. Pointwise dichotomy. In this subsection we consider the inter-

relation between “global” and “pointwise” dichotomies. Let K denote

either R or Z. Fix a point θ0 ∈ Θ. We define an exponential dichotomy

of ϕ̂t over the orbit through θ0 as follows.

Definition 5.2. The LSPF ϕ̂t has exponential dichotomy over K at θ0

if for all τ ∈ K, there exists a projection P (ϕτθ0) ∈ L(X) such that

a) P (ϕτθ0)Φ(θ0, τ) = Φ(θ0, τ)P (θ0);

b) ΦQ(ϕτθ0, t) is invertible from ImQ(ϕτθ0) to ImQ(ϕτ+tθ0) for

all t > 0 and τ ∈ K;

c) there exist positive constants M = M(θ0), β = β(θ0) such

that for all τ ∈ R and t > 0:

‖ΦP (ϕτθ0, t)‖ ≤Me−βt, ‖ [ΦQ(ϕτθ0, t)]
−1 ‖ ≤Me−βt.

For K = R we require, in addition, that τ 7→ P (ϕτθ0) is a (strongly)

continuous function from R to Ls(X).

For invertible-valued cocycles Φ: Θ × K → L(X), Definition 5.2

is equivalent to the classical definition of exponential dichotomy of

a LSPF at a point: There exists a projection P and constants M ,

β, such that ‖Φ(θ0, s
′)PΦ−1(θ0, s)‖ ≤ Me−β(s′−s) for s′ ≥ s, and

‖Φ(θ0, s
′)QΦ−1(θ0, s)‖ ≤Me−β(s−s′) for s ≥ s′ (see, e.g., [46]).
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The following assertion has appeared previously. For the sake of

completeness, we include a brief proof that is consistent with the ap-

proach of the present paper (see also [8], [16, Thm. 7.6.5], and [25,

Thm. 3.22]).

Lemma 5.6. The LSPF ϕ̂t has exponential dichotomy over Z at θ0 ∈ Θ

if and only if πθ0(T ) is hyperbolic in l∞(Z;X).

Proof. Indeed, the spectral radius r of πθ0(T )Pθ0 is given by the formula

r = lim
k→∞

(
sup
n∈Z
‖Φ(ϕnθ0, k)P (ϕnθ0)‖

)1/k

,

and the exponential dichotomy of ϕ̂t at θ0 implies the hyperbolicity of

πθ0(T ) with Riesz projection

Pθ0 = diag{Pn}n∈Z (5.5)

for Pn := P (ϕnθ0).

Conversely, assume πθ0(T ) ∩ T = ∅. Then for all λ ∈ T, [λI −
πθ0(T )]−1 ∈ D. Therefore, as in Corollary 4.5, the Riesz projection Pθ0
corresponding to σ(πθ0(T ) ∩ D is an element of D. Proceeding as in

[21, Lemma 3], one can show that Pθ0 ∈ C. I.e., there exist operators

Pn in L(X) such that Pθ0 = diag{Pn}n∈Z. Now define P (ϕnθ0) := Pn
for each n ∈ Z. This defines projections in L(X), which, by the fact

that πθ0(T )Pθ0 = Pθ0πθ0(T ), are seen to satisfy part a) of Definition

5.2:

P (ϕτθ0)Φ(θ0, τ) = Φ(θ0, τ)P (θ0), τ ∈ Z

(use (4.1)). Also, as in the proof of Lemma 4.7, ΦQ(θ0, k) : ImQ(θ0)→
ImQ(ϕkθ0) is invertible for all θ ∈ Θ, k ∈ Z. In particular, ΦQ(ϕnθ0, k) : ImQ(ϕnθ0)→
ImQ(ϕn+kθ0) is invertible for all n, k ∈ Z.

The estimates in Definition 5.2 c) are also verified as in Lemma

4.7. �

Combining this with Theorem 4.1 gives the following fact.

Corollary 5.7. The LSPF ϕ̂t has exponential dichotomy on Θ if and

only if it has exponential dichotomy at every θ ∈ Θ and ‖[πθ(T ) −
λI]−1‖ ≤ C, θ ∈ Θ, λ ∈ T.
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5.5. Evolutionary semigroups along trajectories. Next we relate

the exponential dichotomy of ϕ̂t to an associated evolutionary semi-

group defined on C0(R, X) along each trajectory of the flow (cf. [21,

25]). Fix θ ∈ Θ, and consider the semigroup {Πt
θ}t≥0 defined by

(Πt
θf)(s) = Φ(ϕs−tθ, t)f(s− t), s ∈ R, t ≥ 0, f ∈ C0(R, X).

Let Lθ denote the generator. The semigroup {Πt
θ}t≥0 is, in fact, an

evolutionary semigroup in the sense of the strongly continuous line

setting. Indeed, for s ≥ τ , set U(s, τ) = Φ(ϕτθ, s− τ). Then U(s, s) =

I, and for s ≥ r ≥ τ ,

U(s, τ) = Φ(ϕτθ, s− t) = Φ(ϕr−τ (ϕτθ), s− r)Φ(ϕτθ, r − t)
= Φ(ϕrθ, s− r)Φ(ϕτθ, r − τ)

= U(s, r)U(r, τ).

Hence, {U(s, τ)}s≥τ is an evolutionary family on X, and (Πt
θf)(s) =

U(s, s − t)f(s − t). As shown in [22, 23] (see also [44, 45]), any such

evolutionary semigroup has the following properties:

Lemma 5.8. σ(Πt
θ) is invariant under rotations centered at origin,

σ(Lθ) is invariant under translation along iR, and the spectral mapping

theorem holds:

σ(Πt
θ)\{0} = etσ(Lθ), t > 0.

Further, when σ(Π1
θ) ∩ T = ∅, the corresponding Riesz projection P is

an operator of multiplication: (Pf)(s) = P (s)f(s), for some bounded,

continuous projection-valued P : R→ Ls(X).

Theorem 4.1 and Lemma 5.6 give the following result.

Theorem 5.9. The following are equivalent

i) The LSPF ϕ̂t has exponential dichotomy;

ii) σ(Π1
θ)∩T = ∅ for all θ ∈ Θ, and there exists C > 0 such that

‖
[
Π1
θ − λI

]−1
‖B(C0(R;X)) ≤ C, θ ∈ Θ, λ ∈ T;

iii) σ(Lθ) ∩ iR = ∅ for all θ ∈ Θ, and there exists C > 0 such

that

‖ [iξ − Lθ]−1 ‖B(C0(R;X)) ≤ C, θ ∈ Θ, ξ ∈ R.

As in Theorem 4.1 (see also [LMS1]), one can replace the inequalities

in ii) and iii) by the inequalities

‖[Π1
θ − I]−1‖B(C0(R;X)) ≤ C, and ‖L−1

θ ‖B(C0(R;X)) ≤ C, θ ∈ Θ,
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respectively. We note that the operators Lθ are differential operators

of the first order, and i) ⇔ iii) reduces the problem of the existence

of exponential dichotomy on Θ to the problem of invertibility of these

operators.

Proof. Lemma 5.8 proves the equivalence of iii) and ii). To prove

i)⇔ ii), we introduce operators on the space

C0(R×Θ, X) = C0(Θ, C0(R, X)) = C0(R, C0(Θ, X))

defined as

(Πh)(s, θ) = Φ(ϕs−1θ, 1)h(s− 1, θ),

(T̂ h)(s, θ) = Φ(ϕ−1θ, 1)h(s− 1, ϕ−1θ),

(Jh)(s, θ) = h(s, ϕsθ), (J−1h)(s, θ) = h(s, ϕ−sθ),

for s ∈ R, θ ∈ Θ, h ∈ C0(R×Θ, X). These operators satisfy

J−1ΠJ = T̂ . (5.6)

Indeed, for r1(s, θ) = h(s, ϕsθ) one has (Πr1)(s, θ) = Φ(ϕs−1θ, 1)h(s−
1, ϕs−1θ), and (J−1ΠJh)(s, θ) = Φ(ϕs−1(ϕ−sθ), 1)h(s−1, ϕs−1(ϕ−sθ) =

(T̂ h)(s, θ).

Next, note that for a function F : Θ → C0(R, X), the operator Π

acts as the multiplication by Π1
θ: (ΠF )(θ) = Π1

θF (θ). Hence, for λ ∈
T, the operator λ − Π of multiplication by λ − Π1

θ is invertible on

C0(Θ, C0(R, X)) if and only if λ−Π1
θ is invertible on C0(R, X) for each

θ ∈ Θ, and ‖(λ − Π1
θ)
−1‖ ≤ C for some C > 0. This means, that the

statement σ(Π) ∩ T = ∅ is equivalent to ii).

By Theorem 4.1, i) is equivalent to the statement σ(T ) ∩ T = ∅ on

C0(Θ, X). From [22] (Theorem 2.5, (1)⇔ (2)), we conclude that σ(T )∩
T = ∅ on C0(Θ, X) is equivalent to σ(T̂ ) ∩ T = ∅ on C0(R, C0(Θ, X)).

Indeed, for f : R → C0(Θ, X), T̂ acts as (T̂ f)(s) = Tf(s − 1), and

this is exactly the case considered in Theorem 2.5 of [22]. Hence, i) is

equivalent to σ(T̂ ) ∩ T = ∅. Equation (5.6) shows that σ(Π) = σ(T̂ ),

and hence i)⇔ ii). �

5.6. Open Problems and Concluding Remarks.

Remark 1. An open problem is to prove analogues of Theorems 3.3 and

4.1 in the Lp-setting: Let µ be a Borel measure on Θ, positive on open
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sets, and quasi-invariant with respect to the flow ϕt. The semigroup

(2.2) could be replaced by

(T tf)(θ) =

(
dµ ◦ ϕt

dµ
(θ)

)1/p

Φ(ϕ−tθ, t)f(ϕ−tθ), f ∈ Lp(Θ, µ,X).

The proof of Theorem 3.3 would require minor changes. However,

the proof of Lemma 4.3 should be modified essentially. Theorem 4.1

has been proven for the strongly continuous line setting for Lp [22,

24]; in this setting, the statement i) ⇔ iii) is proved in [42] using an

interesting alternative C0-semigroup approach.

Remark 2. It would be interesting to determine under which conditions

on the cocycle Φ and in which sense (in strongly continuous locally

compact setting) the generator Γ is given by formula (2.5) (see [34, 35]

for the line setting).

Remark 3. We conjecture that the condition (4.2) in Theorem 4.1 and

the corresponding inequalities in Corollary 5.7 and Theorem 5.9 are

redundant, at least for the norm continuous compact setting. This

means that the LSPF is exponentially dichotomic on Θ if and only if

it is exponentially dichotomic at every θ ∈ Θ. This conjecture is true

for finite dimensional X [47, Lemma 2A] and for the norm continuous

compact setting where X is a Hilbert space [25]. The corresponding

algebraic question here is whether the set of representations {πθ}θ∈Θ of

the algebra B is sufficient, that is, whether b ∈ B is invertible if and

only if πθ(b) is invertible for all θ ∈ Θ.

Remark 4. A problem related to Remark 3 is to consider, instead of

πθ(T ), weighted shift operators πθ̄(T ) along ε-trajectories θ̄. Recall,

that a sequence θ̄ = {θn}n∈Z is called an ε-trajectory for ϕ = ϕ1 if

dist(ϕθn, θn+1) ≤ ε for n ∈ Z. The operator πθ̄(T ) can be defined on

l∞(Z, X) as πθ̄(T ) = diag{Φ(θn−1, 1)}n∈ZS. We suspect that the LSPF

has exponential dichotomy over Θ if and only if πθ̄(T ) is hyperbolic for

all ε-trajectories with sufficiently small ε.

Remark 5. An area open for investigation is the case when Φ is a

(semi)cocycle over a semiflow {ϕt}t∈R+ . For the line setting, this cor-

responds to the dichotomy on the semiaxis.

Remark 6. We showed in this paper that exponential dichotomy per-

sists under small perturbations of the cocycle. A theorem by R. Sacker
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and G. Sell [47, Thm. 6] says that dichotomy persists under “small”

perturbations of a ϕt-invariant compact subset Θ0 ⊂ Θ. The proof in

[47] is essentially finite-dimensional. It would be of interest to know

whether the theorem holds in the strongly continuous setting. We note

that Remark 4 helps to prove the theorem for the uniformly continuous

setting when X is a Hilbert space (in preparation).

Remark 7. We note that Lyapunov numbers (see [8, 20, 47]) for the

cocycle Φ belong to the dynamical spectrum Σ = σ(Γ)∩R. As proven

in [20] for the finite dimensional setting and in [25] for the uniformly

continuous setting on a Hilbert space X, the boundaries of Σ can be

computed via the exact Lyapunov-Oseledets exponents given by the

multiplicative ergodic theorem. This theorem is now available for Ba-

nach spaces [29]. A natural question then is to characterize the bound-

aries of Σ for the compact-valued cocycles on a Banach space.

Remark 8. Another natural question is to relax our main assumption

that the aperiodic trajectories of ϕt are dense in Θ. Without this

assumption the Spectral Mapping Theorem does not hold (see [4] and

[25]). Let p(θ) = inf{t : ϕtθ = θ} denote the prime period of θ ∈ Θ,

and set

p0(θ) := inf
U

sup
y∈U

p(y),

where U denotes an open set containing θ. Let H(S) denote the union

of the circles, centered at origin, intersecting a set S ⊂ C.

Assume p0(θ) ≥ c > 0 for all θ ∈ Θ and some c. We conjecture that

the following Annular Hull Theorem (see [4]) is valid:

exp tσ(Γ) ⊂ σ(T t) \ {0} ⊂ H(exp tσ(Γ)).

There are infinite-dimensional counterexamples (similar to one in [32])

showing the theorem fails without the assumption p0(θ) ≥ c > 0.

To prove this conjecture it might be helpful to consider the following

function:

y(θ) =

p0(θ)∫
0

ρ(t/p0(θ))(T tw)(θ) + (1− ρ(t/p0(θ)))(T t+p0(θ)w)(θ)dt,

instead of (3.11) in the proof of the Spectral Mapping Theorem. The

function ρ : [0, 1] → [0, 1] here (see [23, p. 46]) is a smooth function

such that that ρ(τ) = 0 for τ ∈ [0, 1/3] and ρ(τ) = 1 for τ ∈ [2/3, 1].
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