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Abstract. We give a comparison inequality that allows one to es-
timate the tail probabilities of sums of independent Banach space
valued random variables in terms of those of independent identi-
cally distributed random variables. More precisely, let X1, . . . , Xn

be independent Banach-valued random variables. Let I be a ran-
dom variable independent of X1, . . . , Xn and uniformly distributed
over {1, . . . , n}. Put X̃1 = XI , and let X̃2, . . . , X̃n be independent
identically distributed copies of X̃1. Then, P (‖X1 + · · · + Xn‖ ≥
λ) ≤ cP (‖X̃1 + · · · + X̃n‖ ≥ λ/c) for all λ ≥ 0, where c is an
absolute constant.

The independent Banach-valued random variables X1, . . . , Xn are

said to regularly cover (the distribution of) a random variable Y pro-

vided that

E[g(Y )] =
1

n

n∑
k=1

E[g(Xk)],

for all Borel functions g for which either side is defined [8]. An easy

way of constructing Y , given the independent Banach-valued random

variables X1, . . . , Xn, is to let I be a random variable independent of

X1, . . . , Xn, with values in {1, 2, . . . , n} and with each value having

equal probability 1/n, and then put Y = XI . It is easy to see that

then X1, . . . , Xn regularly cover Y . This construction will be useful for

our proofs.

If the variables are real valued, then the regular covering condition

is easily seen to be equivalent to the condition that the distribution
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function F of Y is the arithmetic mean of the respective distribution

functions F1, . . . , Fn of X1, . . . , Xn.

A variable X ′ is said to be a copy of X if it has the same distribution

as X. The main purpose of this paper is then to prove the following

result.

Theorem 1. There exists an absolute constant c ∈ (0,∞) such that

if X1, . . . , Xn are independent Banach-valued random variables which

regularly cover a random variable X̃1, then:

P (‖X1 + · · ·+Xn‖ ≥ λ) ≤ cP (‖X̃1 + · · ·+ X̃n‖ ≥ λ/c),(1)

for all λ ≥ 0, where X̃2, . . . , X̃n are independent copies of X̃1.

Remark 1. In the case where the random variables are symmetric, this

was shown in [9] (strictly speaking, it was only shown in the real-valued

case, but the proof also works for the Banach-valued case).

Remark 2. The inequality converse to (1) is false, even in the special

cases of symmetric real random variables. For, suppose that c is an

absolute constant such that

P (|X̃1 + · · ·+ X̃n| ≥ λ) ≤ cP (|X1 + · · ·+Xn| ≥ λ/c),(2)

for all λ ≥ 0, whenever the conditions of Theorem 1 hold with sym-

metric variables. Fix any n > max(1, c). Put X2 ≡ · · · ≡ Xn ≡ 0. Let

X1 be such that P (X1 = 1) = P (X1 = −1) = 1
2
. Put λ = n. Then the

right hand side of (2) is zero, since |X1+· · ·+Xn| ≡ 1. But the left hand

side of (2) is non-zero, since it is easy to see that P (X̃i = 1) = 1/2n for

each i (as the X̃i are identically distributed, and as X̃1 can be taken

to be XI where I is independent of everything else and uniformly dis-

tributed on {1, . . . , n}), so that P (|X̃1 + · · ·+ X̃n| ≥ n) ≥ (1/2n)n > 0.

Remark 3. The main consequence of Theorem 1 is that any upper

bound on tail probabilities of sums of independent identically dis-

tributed random variables automatically gives a bound on tail prob-

abilities of sums of non-identically distributed independent random

variables. Our result explains why upper bounds for sums of inde-

pendent identically distributed cases have so readily and consistently

generalized to non-identically distributed cases. We cannot think of

any new applications at this time.
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Remark 4. For a very simple, though not new, application, we give

another proof of one side of a result from [8] on randomly sampled

Riemann sums. Let f ∈ L2[0, 1]. For 1 ≤ k ≤ n, let xnk be uni-

formly distributed over [(k − 1)/n, k/n], and assume xn1, . . . , xnn are

independent for each fixed n. Define the randomly sampled Riemann

sum Rnf = n−1
∑n

k=1 f(xnk). Then the result says that Rnf converges

almost surely to the Lebesgue integral A =
∫ 1

0
f . (For a converse in

the case where all the xnk are independent, not just for fixed n, see

[8].) For, by Borel-Cantelli it suffices to show that
∞∑
n=1

P (|Rnf − A| ≥ ε) <∞,(3)

for all ε > 0. Let X1, X2, . . . be independent identically dis-

tributed random variables with the same distribution as f . Note that

f(xn1), . . . , f(xnn) regularly cover X1, and f(xn1)−A, . . . , f(xnn)−A
regularly cover X1−A. Since f ∈ L2, we have X1 having a finite second

moment, and moreover E[X1] = A, so that by the Hsu-Robbins law of

large numbers [6] (see also [3, 4]), we have
∞∑
n=1

P (|(X1 − A) + · · ·+ (Xn − A)|/n ≥ ε) <∞,

for all ε > 0. By Theorem 1 and the fact that f(xn1)−A, . . . , f(xn1)−A
regularly cover X1 − A, we obtain (3).

To prove Theorem 1, we need some definitions and lemmata. If X

is a random variable, then let Xs = X − X ′ be the symmetrization

of X, where X ′ is an independent copy of X. We shall always choose

symmetrizations so that we have (X1 + · · · + Xk)
s = Xs

1 + · · · + Xs
k

whenever we need this identity.

Write ‖X‖p = (E[‖X‖p])1/p, where ‖ · ‖ is the norm on the Banach

space in which our random variables take values.

The following lemma must surely be well known. However, we could

find no reference, and so we include a short proof.

Lemma 1. Let X be a Banach-valued random variable with ‖X‖2 <

∞. Then, ‖X‖2 ≤ ‖Xs‖2 + ‖E[X]‖ ≤ 3‖X‖2

Proof. Let X ′ be an independent copy of X so that Xs = X−X ′. LetA
be the sigma-algebra generated by X. Then E[Xs | A] = X−E[X ′] =
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X − E[X], and so

‖X‖2 = ‖E[Xs + E[X] | A]‖2 ≤ ‖Xs + E[X]‖2 ≤ ‖Xs‖2 + ‖E[X]‖,

where the first inequality used the fact that conditional expectation

is a contraction on the Banach-valued Lp spaces, p ≥ 1 (see, e.g., [2,

Chapter V, Theorem 4]). The rest of the Lemma follows from the

triangle inequality.

Lemma 2. Let X1, . . . , Xn be independent random variables, and let

X̃1, . . . , X̃n be independent identically distributed random variables such

that X1, . . . , Xn regularly cover X̃1. Put Sn = X1 + · · · + Xn and

S̃n = X̃1 + · · ·+ X̃n. Then:

‖Sn‖2 ≤ 12‖S̃n‖2.

Proof. Let I1, . . . , In be independent random variables uniformly dis-

tributed on the set {1, . . . , n}. Let {Xi,j}1≤i,j≤n and {X ′i,j}1≤i,j≤n be

independent arrays of independent random variables, with the arrays

independent of the Ii, and such that Xi,j and X ′i,j both have the same

distribution as Xj for all i and j. Without loss of generality we can put

X̃i = Xi,Ii . Set X̃ ′i = X ′i,Ii . Let S̃ ′n = X̃ ′1 + · · ·+ X̃ ′n. Let (X ′1, . . . , X
′
n)

be an independent copy of (X1, . . . , Xn), and put S ′n = X ′1 + · · ·+X ′n.

Observe that X1−X ′1, . . . , Xn−X ′n regularly cover X̃i−X̃ ′i for all i, and

that moreover the Xi −X ′i are symmetric. Thus, by [9, Proposition 1]

(which though stated for real valued random variables, holds for the

Banach-valued case as well, and with the same proof) we have:

‖Sn − S ′n‖2 ≤ 4‖S̃n − S̃ ′n‖2.(4)

Also, it is clear that E[Sn] = E[S̃n]. Combining this with Lemma 1,

we see that:

‖Sn‖2 ≤ ‖Sn − S ′n‖2 + ‖E[Sn]‖ ≤ 4‖S̃n − S̃ ′n‖2 + 4‖E[S̃n]‖ ≤ 12‖S̃n‖2,

as desired.

The following Lemma is in effect a special case of a result of

Hitczenko [5].

Lemma 3. Let X1, . . . , Xn be independent identically distributed

Banach-valued random variables with ‖Xi‖ < L almost surely for all i.

Let Sk = X1 + · · ·+Xk. Then:

‖Sn‖1 ≥ c1‖Sn‖2 − c2L,
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where c1, c2 ∈ (0,∞) are absolute constants.

Proof. By the work of Hitczenko [5], we have that if S∗ = maxk ‖Sk‖
and X∗ = maxk ‖Xk‖, then for q ≥ p:

‖S∗‖q ≤ c3
q

p
(‖S∗‖p + ‖X∗‖q),

for a finite absolute constant c3. By [7, Corollary 4] we have ‖S∗‖p ≤
c4‖Sn‖p for an absolute constant c4, as the Xi are identically dis-

tributed. The desired inequality easily follows from this if we let q = 2

and p = 1.

Proof of Theorem 1. Let I1, . . . , In, {Xi,j}1≤i,j≤n, {X ′i,j}1≤i,j≤n, S ′n and

S̃ ′n be as in the proof of Lemma 2. As in that proof, Xn,1 −
X ′n,1, . . . , Xn,n−Xn,n regularly cover Xn,Ik −X ′n,Ik for any fixed k ≤ n.

Applying [9, Proposition 1] (which works for Banach-valued variables

as already stated), we see that

P (‖Sn − S ′n‖ ≥ λ) ≤ 8P (‖S̃n − S̃ ′n‖ ≥ λ/2)

≤ 8P (‖S̃n‖ ≥ λ/4) + 8P (‖S̃ ′n‖ ≥ λ/4)

≤ 16P (‖S̃n‖ ≥ λ/4),

(5)

for all λ, where the second inequality followed from the inequality that

P (‖Xs‖ ≥ t) ≤ P (‖X‖ ≥ t/2) + P (‖X ′‖ ≥ t/2) = 2P (‖X‖ ≥ t/2),

where X ′ is an independent copy of X such that Xs = X −X ′. Note

that Ssn = Sn − S ′n.

Let M be a median of ‖Sn‖. It is easy to see that

P (|‖Sn‖ −M | ≥ λ) ≤ 2P (‖Ssn‖ ≥ λ),(6)

for all λ. (For, if ‖Sn‖ −M ≥ λ, there is at least probability 1/2 that

‖S ′n‖ ≤ M in which case ‖Sn − S ′n‖ ≥ ‖Sn‖ − ‖S ′n‖ ≥ ‖Sn‖ −M ≥ λ

and a similar calculation can be done if ‖Sn‖ −M ≤ −λ.)

We now claim that in general in our present setting:

P (‖S̃n‖ ≥ εM) > δ,(7)

for absolute constants ε, δ ∈ (0, 1) to be determined later. (They will be

determined in accordance with (12), (18), (20), (25) and (26), below).

To prove (7), suppose that on the contrary we have:

P (‖S̃n‖ ≥ εM) ≤ δ.(8)
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Since the X̃i are independent and identically distributed, by a maximal

inequality for sums of independent and identically distributed random

variables [7, Corollary 4] together with (8), we have:

P
(

max
1≤k≤n

‖S̃k‖ ≥ c1εM
)
≤ c1P (‖S̃n‖ ≥ εM) ≤ c1δ,(9)

where c1 ∈ [1,∞) is an absolute constant. By the elementary inequality

P ( max
1≤k≤n

‖Uk‖ ≥ 2t) ≤ P

(
max

1≤k≤n

∥∥∥∥ k∑
i=1

Ui

∥∥∥∥ ≥ t

)
,

valid for all t if the Ui are independent (since if ‖Uk‖ ≥ 2t then

‖
∑k

i=1 Ui‖ ≥ t or ‖
∑k−1

i=1 Ui‖ ≥ t), it follows from (9) that

P
(

max
1≤k≤n

‖X̃k‖ ≥ 2c1εM
)
≤ c1δ.(10)

Let L = 2c1εM . Set Yk = Xk ·1{‖Xk‖<L}. Put Ỹk = X̃k ·1{‖X̃k‖<L}. Note

that Y1, . . . , Yn regularly cover Ỹk for each k. Let Tn = Y1 + · · · + Yn
and put T̃n = Ỹ1 + · · ·+ Ỹn. By (10), we have:

P

( n⋃
k=1

{X̃k 6= Ỹk}
)
≤ c1δ.(11)

Let p = P (‖X̃k‖ ≥ L). Note that this does not depend on k since the

X̃k are identically distributed. Henceforth we will assume that

δ < 1/(2c1).(12)

Now, if x ∈ [0, 1] is such that 1 − (1 − x)n ≤ 1/2, then x ≤ 2n−1(1 −
(1− x)n). Then, since the left hand side of (11) equals 1− (1− p)n, it

follows from (11) that

p ≤ 2n−1(1− (1− p)n) ≤ 2n−1c1δ.

Combining this with (12) and the condition that X1, . . . , Xn regularly

cover X̃1, we see that:

P

( n⋃
k=1

{Xk 6= Yk}
)
≤

n∑
k=1

P (Xk 6= Yk)

=
n∑
k=1

P (‖Xk‖ ≥ L)

= nP (‖X̃1‖ ≥ L) = np ≤ 2c1δ.

(13)
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Now, by (5), (6) and (8), it follows that

P (|‖Sn‖ −M | ≥ 4εM) ≤ 32δ.

Using (13), it then follows that:

P (|‖Tn‖ −M | ≥ 4εM) ≤ (32 + 2c1)δ.(14)

Moreover, by (8) and (11):

P (‖T̃n‖ ≥ εM) ≤ (1 + c1)δ.(15)

Observe that ‖Ỹi‖ < L almost surely. Lemma 3 then shows that:

‖T̃n‖1 ≥ c2‖T̃n‖2 − c3L,(16)

where c2, c3 ∈ (0,∞) are absolute constants.

Now, by (14) we have:

E[‖Tn‖2] ≥ [1− (32 + 2c1)δ](1− 4ε)2M2.(17)

Henceforth, we will assume that δ and ε are sufficiently small that

(1− (32 + 2c1)δ)(1− 4ε)2 ≥ 1
4
.(18)

Using Lemma 2 we see that E[‖Tn‖2] ≤ 144E[‖T̃n‖2]. Combining this

with (17) and (18), we see that

‖T̃n‖2 ≥M/24.(19)

Recall that L = 2c1εM , and choose ε ≤ c2/(96c1c3), so that c3L ≤
c2M/48. This assumption is equivalent to:

ε ≤ c2/(96c1c3).(20)

Thus by (19):

c3L ≤ 1
2
c2‖T̃n‖2.(21)

Then, by (16),

‖T̃n‖1 ≥ 1
2
c2‖T̃n‖2.(22)

The elementary inequality P (|Ξ| ≥ λE[|Ξ|]) ≥ (1−λ)2(E[|Ξ|])2/E[|Ξ|2]

(see, e.g., [1, Exercise 3.3.11]) then implies that

P (‖T̃n‖ ≥ 1
2
‖T̃n‖1) ≥ (1− 1

2
)2 · 1

4
c2

2.(23)

Now, by (19) and (22) we have ‖T̃n‖1 ≥ c2M/48, so that (23) gives:

P (‖T̃n‖ ≥ c2M/96) ≥ c2
2/16.(24)
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If we choose ε and δ such that

0 < ε ≤ c2/96(25)

and

0 < (1 + c1)δ < c2
2/16(26)

and satisfying the other conditions required in the above argument

(namely (12), (18) and (20)), we will obtain from (24) a contradiction

to (15). Hence, if we take ε and δ to be absolute constants in (0, 1)

satisfying these assumptions, we obtain (7).

Now, combining (5) and (6), we see that:

P (‖Sn‖ −M ≥ λ) ≤ 32P (‖S̃n‖ ≥ λ/4),(27)

for all λ. There are now two cases to be considered. Suppose first that

λ ≤ 2M . Then using (7):

P (‖Sn‖ ≥ λ) ≤ 1 ≤ δ−1P (‖S̃n‖ ≥ εM) ≤ δ−1P (‖S̃n‖ ≥ ελ/2).(28)

On the other hand, suppose that λ > 2M . In that case if ‖Sn‖ ≥ λ

then ‖Sn‖ −M > λ− λ/2 = λ/2, so that

P (‖Sn‖ ≥ λ) ≤ P (‖Sn‖ −M ≥ λ/2) ≤ 32P (‖S̃n‖ ≥ λ/4),(29)

by (27). Inequality (1) follows from (28) for λ ≤ 2M and from (29) for

λ > 2M , if we let c = max(32, 2/ε, δ−1).
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