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Abstract

This paper extends the work of Bird, Warner, Stewart, Sørensen, Larson, Ottinger, Vukadi-
novic, and Forest et al., who have applied Spherical Harmonics to numerically solve certain
types of partial differential equations on the two-dimensional sphere. We present a sys-
tematic approach and implementation for solving such equations with efficient numerical
solutions. In particular we are able to solve a wide variety of fiber orientation equations
considered before by Jeffery, Folgar and Tucker, and Koch, and include several recently in-
troduced fiber orientation collision models. The main tools used to compute the coefficients
for the Spherical Harmonic-based expansion are Rodrigues’ formula and the ladder opera-
tors. We show that solutions of the Folgar-Tucker model using our new algorithm retains the
accuracy of full simulations of the fiber orientation distribution function with computational
efforts that are only slightly more than the Advani-Tucker orientation/moment tensor solu-
tions commonly used in industrial applications. The spherical harmonic approach requires
a computational effort of just three times that of the orientation tensor approach employing
the orthotropic closure of VerWeyst, but with less than 1/1000th the computational effort
of numerical solutions of the full orientation distribution function obtained using control
volume methods.

Keywords: Jeffery’s equation, spherical harmonic, anisotropic diffusion, fiber orientation

1. Introduction

Computations involving the equation of motion for a probability distribution function de-
fined on the unit sphere have received increased interest in recent years. Notable applications
include those that model short-fiber reinforced polymer processing (see, e.g., [1]), crystalline
polymers (see, e.g., [2, 3, 4]), turbulence (see, e.g., [5]), nanofibers (see, e.g., [6]) and aerosol
transport (see, e.g., [7]). This paper focuses on a Spherical Harmonics Galerkin expansion
approach to evaluate the inclusion orientation probability distribution function as expressed
in the diffusion equation by Bird et al. [8] also known as a modified Fokker-Planck equation
or the Smoluchowski equation (see, e.g., [9]), with particular emphasis on representations of
short fiber orientation kinematics for concentrated suspensions.

Among published short fiber orientation distribution simulation approaches, few enjoy the
widespread acceptance of the Folgar and Tucker [1] model which forms the basis for most



industrial fiber orientation simulations today (see, e.g., [10, 11, 12, 13]). Recent experiments
by Nguyen and co-workers [14], however, have exposed previously unknown limitations of
the Folgar-Tucker model, raising questions on the appropriate form to define the orientation
diffusion (see, e.g., [15, 16, 17, 18, 19, 20]). The solution procedure considered in the present
work makes it possible to quickly implement and solve the Folgar and Tucker model and many
of its generalized forms that address issues associated with orientation diffusion, as well as
enhanced forms that are yet to be developed. Results are presented below for solutions to
the Folgar and Tucker model, and for solutions employing anisotropic rotary diffusion such
as that of the Koch [15] model, the model of Phelps and Tucker [20], and the reduced-strain
closure model of Wang et al. [19].

Numerical solutions of the fiber orientation distribution function for even simple flow
problems require a relatively large computational effort to evaluate the equations of motion.
For example, obtaining the transient solution of the complete fiber orientation distribution
function in a simple injected molded center-gated disk can take days to weeks on a standard
workstation (see, e.g., [21, 13]), thus rendering such evaluations ineffective for engineering
design purposes. To cast these probability distributions in an acceptable industrial form,
Advani and Tucker [10] simplified calculations using moments of the orientation distribution
function written as orientation tensors. This technique yields a tensor expression for the
equation of motion (see, e.g., Equation (36) below), thus replacing the partial differential
equation of motion for the probability distribution with an ordinary differential equation
for the moments of the distribution. The orientation tensor approach is widely employed in
industry to predict the orientation state of concentrated suspensions (see, e.g., [22, 11, 12,
23, 24, 25, 13]). The industrial case of a center-gated disk can be solved on the order of
minutes for the second- and the fourth-order moment tensor equations of motion (see, e.g.,
Jack and Smith [13]).

The evolution equation of each even-ordered orientation tensor requires that the next
higher even-ordered orientation tensor be available. In practice, the solution process is trun-
cated or ‘closed’ by approximating the orientation tensor of a particular order in terms of the
lower-ordered tensors. For example, there exist many closure approximations of the fourth-
order orientation tensor which are evaluated as a function of the second-order orientation
tensor (see, e.g., [26, 2, 10, 21, 27, 12, 23, 24, 25]), and there are several closures which ap-
proximate the sixth-order orientation tensor written in terms of the fourth-order orientation
tensor ([10, 22, 13, 28]). Lipscomb et al. [29] demonstrated approaches to avoid the use
of closure approximations by solving an ’equivalent strain tensor’, but these approaches are
only valid in the range of dilute concentrations and are thus discarded in the present study
for concentrated suspensions.

Unfortunately, simulations that rely on orientation tensor closures yield truncated ap-
proximations to the solution of the fiber orientation distribution function. In fact, each
tensor closure method can be shown to exhibit limitations under certain flow conditions,
either in the quantitative numerical results or remaining within the ‘physical’ realm of pos-
sible orientation states, and thus are inherently suspect. Jack and Smith [30] considered the
relative effect of a closure on the truncation error. They showed that all fourth and sixth-
order closures are, respectively, limited by the fourth, and sixth-order spherical harmonic
based reconstructions of the orientation distribution function, and that further work on the
closures of the fourth-order orientation tensor will only serve to have nominal increases in
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computational accuracy. More importantly, it is always uncertain as to the effectiveness of
a particular closure developed for one class of partial differential equations in the setting
of a similar, but fundamentally different, constitutive equation. The Spherical Harmonics-
based approach presented here eliminates the need for orientation tensors and their related
closures. As such, closure methods are included here for comparison purposes only where
it is shown that our approach enjoys the computational accuracy of full orientation distri-
bution function simulations, while retaining computational efficiencies similar to that of the
orientation tensor closure methods.

The orientation state of short fibers is of interest during processing, but for the product
designer it is often the composite’s structural performance that is of interest. Advani and
Tucker [10] presented an orientation averaging procedure to relate the fourth-order orien-
tation tensor obtained from a mold filling simulation to the material stiffness tensor of the
molded part. Jack and Smith [31] demonstrated through the use of the Spherical Harmonics,
that only fourth-order moments of the orientation distribution function are required to com-
pute the expectation of the material stiffness as all higher order moments integrate to zero
due to orthogonality. In addition, Jack and Smith [32] showed that the predicted expecta-
tion of the material stiffness tensor from forth-order orientation tensors provides reasonable
results as compared to those obtained from numerical simulations of the full fiber orientation
distribution function. Jack and Smith [31] also evaluted the variance of the elasticity ten-
sor which requires moments of the orientation distribution function beyond the forth order.
Current orientation tensor based approaches for processing predictions include up to the
fourth-order tensor moments only, and thus would be unable to capture any higher order
structural properties such as the stiffness variance or plastic deformation characteristics.

Spherical Harmonic-based methods for solving partial differential equations on the unit
sphere have been presented elsewhere (see, e.g., [33, 34, 8, 35, 36, 6, 37]). Vukadinovic [37]
investigated the inertial manifolds of the Smoluchowski equation for colloidal suspensions
and used Spherical Harmonics to transform the system to eliminate the gradient from the
nonlinear term in the differential equation. Recently Forest et al. [6] developed an efficient
solver using a spherical harmonic Galerkin expansion of the Smoluchowski equation. They
moved beyond the traditional second-order spherical harmonic expansion employed in [33,
2, 38, 36, 39] to expansions up to the 65th order to represent orientation.

The present work moves beyond that of Forest et al. [6] by forming the spherical harmonic
expansion of any order for a wide variety of general rotary diffusions, applicable to a wide
range of colloidal suspension flows: from short fibers to nano-composites to liquid-crystalline
polymers. We provide a systematic numerical approach to the solution procedure so that it
can be easily adapted to other more general situations as evidenced by the examples provided
below.

We also mention other related papers. Onat [40] and Onat and Leckie [41] presented
spherical harmonic expansions of probability distribution functions on the unit sphere up to
the fourth-order to evaluate the elastic moduli of a material with penny- shaped voids. A
similar method was later used by Advani and Tucker [10] for expansions of the distribution
function to evaluate elastic properties of short-fiber composites. Jack and Smith [30] used
the method of spherical harmonic expansions as a basis for comparing transient orientation
solutions obtained using closures of various order, and presented the analytic form for the
sixth-order expansion. Recently, Jack and Smith [31] used a spherical harmonic expansion to
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derive analytic expressions for the expectation and variance of the elastic property tensor for
short-fiber polymer composites which required the orientation moment tensors up through
the eighth-order.

2. Differential Equations on the Unit Sphere

The objective of this paper is to present a systematic spherical harmonic method to numer-
ically solve partial differential equations on the two dimensional sphere, S = {r = (x, y, z) :
|r|2 = x2+y2+z2 = 1}, or in spherical coordinates, r = (x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ),
where 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. The partial differential equations considered here are of the
form

∂

∂t
ψ = F (r,∇)ψ, (1)

where ψ is a function (for example, the orientation probability distribution function) defined
on S. Here F is a polynomial in six variables, with the proviso that it matters in which
order the terms of each monomial part are written. We believe that this includes many of
the published, if not all, of the partial differential equations that describe the evolution of
the orientation distribution function for short fiber suspensions.

Here ∇ denotes the gradient operator restricted to the sphere, not the usual gradient in
three-dimensional space, that is:

∇ = (∇x,∇y,∇z) = θ
∂

∂θ
+ csc θφ

∂

∂φ
= (I − rr) ·

(

∂

∂x
,
∂

∂y
,
∂

∂z

)

(2)

where

θ = (cos θ cosφ, cos θ sin φ,− sin θ) (3)

φ = (− sinφ, cosφ, 0) (4)

The spherical harmonic approach converts Equation (1) to a system of ordinary differential
equations written as

∂

∂t
ψ̂m

l =

∞
∑

l′=0

l′
∑

m′=−l′

cm,m′

l,l′ ψ̂m′

l′ , (5)

where ψ̂m
l (l ≥ 0, |m| ≤ l) are the spherical harmonic coefficients of ψ, given in Equation (19),

with the coefficients cm,m′

l,l′ defined in Equation (25). Larson [35] obtained the coefficients for
the non-linear terms, but this is beyond the scope of the present study.

The main focus of this paper is to develop a systematic algorithm for calculating the
coefficients cm,m′

l,l′ appearing in Equation (5) (and also in Equation (25) below). This al-
gorithm makes it possible to readily solve all differential equations on the unit sphere of
the form shown in Equation (1), and specifically the fiber orientation distribution equation
given in Bird et al. [8]. With this systematic approach, we hope to open up this method
to a much wider audience. The approach presented here offers three advantages: 1) using
the algorithm, the experimentalist can easily try new partial differential equations that pur-
portedly models their situation, 2) if the order of the Spherical Harmonics is taken high
enough, one can obtain arbitrarily high accuracy (indeed, because the Spherical Harmonics
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form a Hilbert basic sequence, it will likely be easy to estimate the numerical error), and

3) the matrices of coefficients cm,m′

l,l′ in equation (5) are surprisingly sparse, and as such, the
numerical algorithm lends itself to rapid computations.

3. Description of the Model Equations

To illustrate our solution method, we consider variations of Jeffery’s equation [42] which
describes the motion of fibers in a moving fluid with vorticity w and rate of deformation
tensor Γ. Jeffery’s equation is often written in terms of the fiber orientation distribution
function ψ and the fiber aspect ratio parameter −1 ≤ λ ≤ 1 as

∂

∂t
ψ = Jψ := −1

2
∇ · (w × rψ + λ(Γ · r − Γ : rrr)ψ), (6)

where we note that the right hand side is in the form of Equation (1). A variation of
Equation (6) incorporates the rotary diffusion expressed by Bird et al. [8], occasionally
referred to as the generalized Fokker-Planck or the Smoluchowski equation [9], as

∂

∂t
ψ = Jψ + ∇ · ∇(Drψ), (7)

where Dr captures the effect of fiber interaction and depends upon the flow kinetics. Folgar

and Tucker [1] selected Dr = CIγ where γ =
(

1

2
Γ : Γ

)1/2
and CI is a constant that depends

upon the volume fraction and aspect ratio of the fibers.
To better illustrate our systematic approach, we include the solution of Equations (6)

and (7) in the examples below, even though they have been solved previously with Spherical

Harmonics using the coefficients cm,m′

l,l′ in Equation (5) that appear in Bird and Warner [34].[]
In our analysis, we will also consider examples of anisotropic diffusion such as that proposed
by Koch [15] in the differential equation

∂

∂t
ψ = Jψ + ∇ · (I − rr) ·Dr · ∇ψ = Jψ + (∇ − 2r) ·Dr · ∇ψ (8)

where the anisotropic diffusion matrix Dr is defined in terms of the model parameters C1

and C2 (see Koch [15] for more detail) as

Dr = C1γ
−1(Γ : A : Γ)I + C2γ

−1Γ : A : Γ. (9)

In the above, the (I − rr) term, with I being the identity tensor, serves to project vectors
onto the surface of the sphere. We note that this term is not explicitly included in Koch’s
[15] formula, however it’s existence is implied in the original introduction.

The anisotropic diffusion matrix Dr defined in Equation (9) is written in terms of the
2nd, 4th and 6th order moment tensors of ψ which are, respectively, defined as

A :=

∫

S

ψrr dr, A :=

∫

S

ψrrrr dr, and A :=

∫

S

ψrrrrrr dr. (10)
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In these integrals, we adopt the common definition for the integral of a function F (r) over
the surface of the unit sphere as

∫

S

F (r) dr :=

∫ π

θ=0

∫ 2π

φ=0

F (r) sin θ dφ dθ, (11)

and we note here that the moment tensors A, A, and A can be expressed in terms of Spherical
Harmonics as shown below in Equation (34).

Phelps and Tucker [20] proposed a slightly different form of Dr, the “anisotropic rotary
diffusion”, which is written in terms of the fitted parameters bi, i = 1, 2, . . . 5 as

Dr = b1γI + b2γA + b3γA
2 + 1

2
b4Γ + 1

4
b5γ

−1Γ2. (12)

Note that the constants 1

2
and 1

4
in Equation (12) are modified from that given in the formula

by Phelps and Tucker [20] since they use 1

2
Γ for the rate of deformation tensor.

Before developing our Spherical Harmonics solution method, it is helpful to consider
additional mathematical relationships that will be used below. Care must be exercised in
not confusing the differential geometry on the surface of the sphere S with the differential
geometry in the three dimensional space R

3 it is embedded in. Thus, for example, integration
by parts is the slightly unexpected form

∫

S

f · ∇g dr = −
∫

S

(∇ · (I − rr) · f)g dr =

∫

S

((2r− ∇) · f)g dr, (13)

where the gradient operator ∇ is restricted to orientation space as defined in Equation (2).
Equation (13) reduces to the usual integration by parts when f is tangential to the surface
of the sphere. We also recall the so called angular momentum operator

L = −ir × ∇ = (Lx, Ly, Lz) = −i
(

y
∂

∂z
− z

∂

∂y
, z

∂

∂x
− x

∂

∂z
, x

∂

∂y
− y

∂

∂x

)

, (14)

where, as usual, i denotes the complex number satisfying i2 = −1. Integration by parts for
the angular momentum operator is more straightforward, that is,

∫

S

f · Lg dr = −
∫

S

(L · f)g dr. (15)

Note that L × L = ∇ × ∇ = iL, and in particular ∇x, ∇y and ∇z do not commute with
each other. We also use the formulae r · ∇f = r · Lf = L · (rf) = 0 and ∇ · (rf) = 2f . For
completeness, the proof of Equations (13) and (15) in given in the Appendix.

4. Spherical Harmonics Solutions

A brief description of Spherical Harmonics is given here to provide much of the background
needed to apply our solution procedure. The interested reader is encouraged to review
Weisstein [43] or similar for further details.
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Any square integrable function ψ defined on S may be written as a Fourier series like
representation in terms of the Spherical Harmonics Y m

l (θ, φ) for l ≥ 0 and |m| ≤ l as

ψ =

∞
∑

l=0

l
∑

m=−l

ψ̂m
l Y

m
l , (16)

where we can define the Spherical Harmonics as

Y m
l (θ, φ) =

√

(2l + 1)(l −m)!

4π(l +m)!
Pm

l (cos θ)eimφ. (17)

Both Y m
l (θ, φ) and their complex conjugates Ȳ m

l (θ, φ) = Y m
l (θ,−φ) = (−1)mY −m

l (θ, φ) are
written as functions of the associated Legendre Polynomials defined as

Pm
l (z) =

(−1)l+m

2ll!
(1 − z2)m/2 ∂

l+m

∂zl+m
(1 − z2)l. (18)

The coefficients ψ̂m
l in Equation (16) are evaluated from

ψ̂m
l =

∫

S

ψȲ m
l dr, (19)

We note that the spherical harmonic functions form an orthogonal basis, i.e.,
∫

S

Y m
l Ȳ m′

l′ dr = δl,l′δm,m′ (20)

where δi,j is the Kronecker delta.
Note that Equation (16) has been used in rigid-inclusion applications for reconstructions

of the fiber orientation probability distribution from the moment tensors (see, e.g., [10, 30]),
and for analytical forms of the stiffness tensor expectation and variance from the moment
tensors [31]. In both cases, the series for ψ in Equation (16) was truncated at a relatively
low order (that is, l = 2, 4, or 8) rather than retaining the complete series.

To obtain the system of ordinary differential Equations (5), we integrate Equation (1)
against Ȳ m

l over the unit sphere to obtain its adjoint or weak form as

∂

∂t

∫

S

ψȲ m
l dr =

∫

S

ψF ∗(r,∇)Ȳ m
l dr, (21)

where the right hand side follows from integration by parts and F ∗ denotes any polynomial
F in which each monomial term is written in reverse order with the substitution 2r−∇ for
∇. Therefore, applying Equation (21), Jeffery’s Equation (6) is defined by

J∗ = 1

2
(w · (r × ∇) + λr · Γ · ∇), (22)

Similarly, the two extensions of Jeffery’s equation that include diffusion appearing in Equa-
tions (7) and (8) (expressed as ∂

∂t
ψ = Fψ), respectively become

F ∗ = J∗ +Dr∇ · ∇, (23)
7



and
F ∗ = J∗ + (∇ − 2r) ·Dr · ∇. (24)

In all cases, we can decompose

F ∗(r,∇)Ȳ m
l =

∞
∑

l′=0

l′
∑

m′=−l′

cm,m′

l,l′ Ȳ m′

l′ , (25)

and therefore obtain the spherical harmonic representation shown in Equation (5) above.
The difficulty in solving Equation (1) is therefore reduced to computing the coefficients

cm,m′

l,l′ in Equation (25). For this, we need to evaluate the effect of differentiating and mul-
tiplying by x, y or z on the Spherical Harmonics function in Eq. (17). First we consider
Rodrigues’ formula which describes the effect of multiplying any Y m

l by z giving

zY m
l =

√

(l +m)(l −m)

(2l − 1)(2l + 1)
Y m

l−1 +

√

(l +m+ 1)(l −m+ 1)

(2l + 1)(2l + 3)
Y m

l+1. (26)

The angular momentum operators in Equation (14) are used to define ladder operators

L+ = Lx + iLy = eiφ

(

∂

∂θ
+ i cot θ

∂

∂φ

)

,

L− = Lx − iLy = e−iφ

(

− ∂

∂θ
+ i cot θ

∂

∂φ

)

,

(27)

so called because of how they effect the Spherical Harmonics, that is,

L+Y
m
l =

√

(l −m)(l +m+ 1)Y m+1

l ,

L−Y
m
l =

√

(l +m)(l −m+ 1)Y m−1

l .
(28)

It can also be shown that
LzY

m
l = mY m

l . (29)

It follows that the effect of multiplying by polynomials in x and y can be evaluated from
the identities

x = −i[Ly, z] and y = i[Lx, z], (30)

respectively, where [U, V ] denotes the commutator UV −V U . Similarly, applying the gradient
operator follows from

∇x = ziLy − yiLz, ∇y = xiLz − ziLx, ∇z = yiLx − xiLy . (31)

Then using Equations (26) to (31), it is possible to compute explicitly the coefficients cm,m′

l,l′

in Equation (25), and hence the same in Equation (5). It is helpful to note that in certain
special cases, calculations can be simplified by applying

∇ · ∇Y m
l = −l(l + 1)Y m

l (32)
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which holds for Spherical Harmonics by design since they are constructed as eigenfunctions
of the Laplacian operator.

Moment tensors may be computed using Spherical Harmonics as well. For example, to
compute the 6th order moment tensor A in Equation (10) we simply expand

rrrrrrȲ 0

0 =
6

∑

l=0

l
∑

m=−l

Cl,mȲ
m
l , (33)

where Cl,m is the tensor of rank six composed of coefficients calculated by applying x, y and
z to Ȳ 0

0 six times using the Rodrigues’ formula and ladder operators described above. It
follows that since Ȳ 0

0 = 1/
√

4π, the 6th order orientation tensor becomes

A =
√

4π

∫

S

ψrrrrrrȲ 0

0 dr =
√

4π

6
∑

l=0

l
∑

m=−l

Cl,mψ̂
m
l , (34)

where the orthogonality of the Spherical Harmonics are used to simplify the final result.

5. The “Spherical” Program Algorithm

An automated algorithm has been implemented to compute the coefficients cm,m′

l,l′ in Equa-
tion (25) for any differential equation satisfying the criteria given above (and, therefore, the
Cl,m in Equation (34)). The algorithm recursively applies the replacement rules described in
Equation (35) until no further substitutions can be made. Here “op” denotes any of z, Lz,
L+, or L− operations, and Y denotes any linear combination of the Ȳ m

l ’s. We are compute
the effect the complex conjugates have on the Spherical Harmonics, thus the formulae are
slightly different than those derived above.

op(Y ± cȲ m
l ) → op(Y) ± c op(Ȳ m

l ),

xY → ziLy(Y) − iLy(zY),

yY → iLx(zY) − ziLx(Y),

zȲ m
l →

√

(l +m)(l −m)

(2l − 1)(2l + 1)
Ȳ m

l−1 +

√

(l +m+ 1)(l −m+ 1)

(2l + 1)(2l + 3)
Ȳ m

l+1,

∇xY → ziLy(Y) − yiLz(Y),

∇yY → xiLz(Y) − ziLx(Y),

∇zY → yiLx(Y) − xiLy(Y),

Lx(Y) → 1

2
(L+(Y) + L−(Y)) ,

Ly(Y) → − i
2
(L+(Y) − L−(Y)) ,

LzȲ
m
l → −mȲ m

l ,

L+Ȳ
m
l → −

√

(l +m)(l −m+ 1)Ȳ m−1

l ,

L−Ȳ
m
l → −

√

(l −m)(l +m+ 1)Ȳ m+1

l

(35)
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It is important to note that xȲ m
l , yȲ m

l , zȲ m
l , ∇xȲ

m
l , ∇yȲ

m
l , and ∇zȲ

m
l involve Ȳ m′

l′ for l′

and m′ that differ from l and m, respectively, by at most one. 1

6. The Reduced Strain Closure Model

To further illustrate the flexibility of our solution procedure, we consider the recently
proposed reduced strain closure model for fiber orientation calculations by Wang et al. [19].
Their approach is based on the orientation tensor method [10] where a differential equation
is derived by applying orientation averaging to Equation (1). The governing equation for
the second moment tensor A is written in terms of F ∗ in Equation (23) as

∂

∂t
A = B :=

∫

S

ψF ∗(r,∇)(rr) dr. (36)

For example, Phelps and Tucker [20] showed that if ψ is a probability distribution satisfying
Equation (8), then the following holds:

∂

∂t
A =1

2
(W · A− A ·W + λ(A · Γ + Γ · A− 2A : Γ))

+ 2Dr − 2(trDr)A− 5(A ·Dr +Dr · A) + 10A : Dr,
(37)

where W =
[

0 −w3 w2

w3 0 −w1

−w2 w1 0

]

.

Note that the moment tensor Equation (37) is of particular interest since Wang et al.

[19] noted that experimental evidence showed overwhelmingly that the rotary diffusivity in
Equation (7) over-estimates the rate of alignment for a concentrated suspension of fibers in
pure shearing flows. They apply a simple modification to delay alignment by rewriting the
evolution equation for A as Ȧ = κB where κ is the so called ”strain reduction factor” taking
values of 0 ≤ κ ≤ 1.

Unfortunately, the strain reduction factor approach suffers from the disadvantage that it
is not objective. Hence Wang et al. [19] proposed the RSC model which slows orientation
alignment in simulations of A while remaining objective. To solve the RSC model using our
spherical harmonic approach we first write A in its spectral form A =

∑3

k=1
λkekek, where

the λk are the eigenvalues, and the ek are the corresponding orthonormal eigenvectors. Then
Equation (36) can be rewritten as

3
∑

k=1

(λ̇kekek + λkėkek + λkekėk) = B,

1The developed script employed in the present study uses the recursive algorithm in Equation (35) to
create threaded functions in the programming language C which in turn are used in an iterative procedure
for computing the solution to the differential equation in Equation (1). The script may be found at http:
//www.math.missouri.edu/~stephen/software/spherical and is written in perl making use of either
the commercial computer algebra system Mathematica by Wolfram Research, or the open-source computer
algebra system Maxima. The scripts are designed to work in a Unix like environment.
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from which it follows that λ̇k = ekek : B, and a similar explicit formula for ėk exists. The
RSC model replaces the equations for λ̇k with

λ̇new

k = κekek : B,

but leaves the equations for ėk intact. Thus the RSC model equation for Ȧ is

∂

∂t
Anew = B − (1 − κ)

3
∑

k=1

λ̇kekek = B − (1 − κ)M : B, (38)

where M is the rank four tensor
∑3

k=1
ekekekek. It follows that the RSC model for ψ is

∂

∂t
ψnew = F − (1 − κ)G+H (39)

where

G = 15

8π
(rr − 1

5
I) : M : B = 1

4π
(trB) − 5

8π
∇ · ((M : B) · r − (M : B) : rrr). (40)

In the above equations, H is any quantity whose second moments are zero.

7. Numerical Examples

We first consider the example of Jeffery’s equation without diffusion as expressed in
Equation (6). The motivation to use Jeffery’s equation as our first example is two fold:
1) there are explicit solutions with which we can compare our numerics, and 2) the solutions
to Jeffery’s equation can contain sharp peaks with almost shock-like characteristics, and
hence can be regarded as a tough work-out for the numerical methods. Indeed, the addition
of diffusion will smooth the data, and hence render the numerics easier.

To ensure adequate results for our example simulations, we consider Spherical Harmonics
of order L = 400. It can be shown that there are L2 Spherical Harmonics of order less than
or equal to L, and since each coefficient is a complex number, this means that analysis with
L = 400 yields a system of ordinary differential equations with 320, 000 dependent variables.
In this case this is computationally unrealistic since directly computing Equation (5) re-
quires multiplications with a 320, 000 × 320, 000 matrix, that is, about one hundred billion
operations.

Fortunately, there are several attributes that significantly reduce the size of the matrix
equations for this problem, making it more tractable with regard to computational efforts.
It can be shown that if F ∗ is a polynomial of degree at most d, then cm,m′

l,l′ is non-zero only
if both |l − l′| ≤ d and |m − m′| ≤ d. For the Jeffery’s Equation (6), F ∗ is of degree 2
which reduces the matrix multiplications to include matrices with only 25 × 320, 000 non-
zero entries. We do not distinguish between the “back” and “front” of each fiber, further
reducing the computational effort. To incorporate this fiber symmetry, we identify antipodal
points, that is, r with −r, or equivalently, (θ, φ) with (−θ, φ+π). Thus in the decomposition
Equation (16), ψ̂m

l is non-zero only when l is even, which reduces the number of coefficients
by a factor of approximately two. Also, the functions ψ are real valued, yielding an additional
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two-fold redundancy in the coefficients since ψ̂−m
l = (−1)m ¯̂

ψm
l . Therefore, the matrices in

Equation (5) for Jeffery’s Equation (6) with order L = 400 requires multiplications with
matrices that are approximately 15×80, 000 in size which is trivially solved in any standard
programming language.

A pure shearing flow is considered, defined by vorticity w = (0, 0,−G) and rate of defor-

mation Γ =
[

0 G 0
G 0 0
0 0 0

]

. This models a fluid undergoing shear parallel to the yz-plane, where

the amount of shear is equal to Gx and is in the y direction. It has been shown that the fiber
orientation tensor solution for a dilute suspension is periodic with period corresponding to
a fiber rotating through 180◦ of 2π/G

√
1 − λ2 (see, e.g., [38]).

Figure 1 shows numerical results for selected entries of the second moment tensor, A11,
A22, A33 and A12, beginning from an initially isotropic orientation state (that is, ψ = 1/4π
at t = 0) with λ = 0.98. Values appearing in Figure 1 result from simulations with Spherical
Harmonics of order 400. The systems of ordinary differential equations in Equation (5) were
computed using the Adams-Bashforth method of order 4 with a time step size of 10−3. The
result is periodic with the correct period, that is 31.57/G. It is important to note that
simulations with a significantly lower order of Spherical Harmonics (i.e., L = 200) produced
results that were of a lower quality (not shown). Current industrial simulations for predicting
fiber orientation within a processed part employ the orientation tensor approach of Advani
and Tucker [10], which requires a closure approximation. To provide a comparison with
the orientation tensor-based approach and the Spherical Harmonic approach, we provide
additional results in Figure 1 for solutions using the orientation tensor equation of motion
with the Hybrid and the ORT closures. It is common practice to use the Hybrid closure [10]
due to its computational efficiency, or one of the fitted orthotropic closures (see, e.g. [12, 44,
24, 45]) when higher accuracy is needed. In particular, the ORT closure of VerWeyst et al.

[45] has found widespread acceptance and it is important here to relate the solutions from our
Spherical Harmonics solution approach to the orientation tensor-based method that employ
closure approximations. Solutions of second-order orientation tensor equation of motion
using the aforementioned closures are shown in Figure 1, and it is clear that solutions from
the ORT and the Spherical Harmonics approach yield visually identical solutions, whereas
the Hybrid closure differs considerably. Of note is the predicted period from the ORT closure,
31.72/G, is not the same as the true Jeffery period, but is nonetheless impressive considering
the solution relies on an approximation of A.

Figure 2 illustrates numerical results for two flows modeled with the Folgar-Tucker dif-
fusion model of Equation (7) with CI = 10−3. Here we consider a pure elongational flow

given by w = (0, 0, 0) and Γ =
[

2G 0 0
0 −G 0

0 0 −G

]

, and the pure shear flow discussed above with

λ = 1. We solve the system with the Adams-Bashforth method of order 2, a time step size
of 10−3 and a spherical harmonic expansion of order L = 100. Results for the spherical
harmonic solution are denoted by ASpherical

ij and are compared with numerical results from the
full orientation Distribution Function Calculation (DFC) using the control volume method
suggested by Bay [46]. This comparison is performed due to the widespread acceptance of
the accuracy of Bay’s approach (see, e.g., [12, 24, 13]). As observed in Figure 2, the results
from the two approaches are graphically indistinguishable, and observations of the numerical
outputs shows identical solutions between the two methods out to the fourth and fifth sig-
nificant digits. Similar studies were performed over a variety of flow conditions (not shown
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here), and results from the two approaches yield numerically identical solutions. Simulations
are also presented in Figure 2 for solutions of A using the orientation tensor approach with
the ORT and the Hybrid closures to approximate the fourth-order orientation tensor. It is
clear from Figure 2(b) that the results from the closures do not approach the accuracy of the
Spherical Harmonic approach. The DFC approach and the Spherical Harmonic approach
yield identical solutions, but it is important to mention that the usefulness of the DFC ap-
proach is limited due to the excessively large computational expense required for solutions.
The computational resources for the DFC increase exponentially as either the degree of fiber
interaction diminishes in the Folgar and Tucker model (i.e. CI ↓ 0) or as the diffusion model
for the form of Dr becomes more complex. Thus obtaining results using the DFC approach
for pure Jeffery’s motion from the previous example would be well beyond our available
computational resources. This limitation is avoided with the Spherical Harmonic approach
as solution accuracy is only limited by machine precision, but have similar computational
overheads as the industrially accepted closure approach.

As with other series representations, a small error is introduced when truncating the
Spherical Harmonics expansion to order L. It is desired that the resulting truncation error
is within a tolerable level while avoiding the computational burden associated with retaining
unnecessary higher-order terms. To this end, we truncated Equation (5) at various Lth
order expressions, and solved Jeffery’s equation with Folgar-Tucker diffusion of Equation (7)
for the aforementioned elongational and shearing flows. The results with various orders of
expansion appear in Figure 3. As seen in the elongational flow results in Figure 3(a), the
lower order expansion (L = 20) maintains the correct solution throughout the initial aligning
stages, but once the orientation distribution nears an aligned state, the solution begins to
rapidly diverge. As L increases, the spherical harmonic approach is better equipped to
represent a highly aligned orientation state. Notice in this case that the A11 component
approaches 0.9975 (recall, A11 = 1 is unidirectional in the x direction) requiring that the
order of the expansion be increased to properly represent the highly aligned condition. Notice
that an expansion of L = 100 is quite sufficient in our elongational flow simulations. Higher
degrees of alignment (that is, those resulting from lower CI values) are expected to require
a higher order expansion to avoid unstable solutions. Conversely, the shearing flow does not
experience an orientation state as aligned as in the elongational flow. Notice in Figure 3(b)
that L = 30 is nearly indistinguishable from the case L = 400, and that L = 50 has been
found to work well in all flows with CI = 10−3 where the shearing component of the flow
dominates over the elongational component (such flows prevent a high degree of alignment).

The results presented above demonstrate that the spherical harmonic approach yields
solutions with an accuracy equal to solutions using the control volume approach of Bay [46]
and well beyond that of the orientation tensor approach. Unfortunately, accuracy alone is
not sufficient for industrial implementation. To this end, several simulations were performed
to compare the computational effort required to obtain fiber orientation states with the
Folgar-Tucker diffusion model using the spherical harmonic approach, the orientation tensor
approach, and the control volume approach. A normalized time tNorm is defined as the
number of seconds of computer processing time required to solve for a unit of flow evolution
time for the flow (that is, ∆t = G−1). Computations were performed on a Dual Zeon, 3.6
GHz processor running in 32-bit mode with 4 GB of RAM using multi-threading for all three
solution methods. The control volume results (DFC) were obtained using a variation of Bay’s
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[46] code written in Fortran 95 and multi-threaded using Intel’s compiler. The orientation
tensor results were obtained using an in-house code, and the closure approximations were
evaluated using highly optimized algorithms. Each of the three simulation methods were
used to compute fiber orientation in all of the 13 flow conditions that includes various
combinations of shearing and elongational flows as described in Jack and Smith [13]. It can
be shown that the flows selected encompass the eigenspace of A and they have served to
demonstrate both the effectiveness and the limitations of a particular closure under different
flow conditions (see, e.g., [12, 44, 24, 13]).

The results from the analysis are summarized in Table 1. For each of the approaches, three
normalized time values are given, the maximum, the minimum and the average over each of
the flow simulations. The reason for the variation in the orientation tensor approaches of
the ORT, Hybrid, Spherical (L = 50) and Spherical (L = 100) is partially attributed to the
accuracy of the system clock used (clock precision ∼ 10−3) and the fact that the compiled
results will behave differently based on the different flow types since different components
of the velocity gradient tensor will be zero under each of the flows. On the other hand, the
DFC time variations are directly attributed to the velocity field since the step size employed
is a function of the scalar magnitude of the rate of deformation, which is different for each
of the flows investigated.

Notice that the control volume approach is clearly the slowest method averaging over
800 seconds of computational time to solve just one second of flow time. Conversely, the
spherical harmonic approach (with order L = 50) requires three orders of magnitude less
computational effort than the control volume solution approach. As discussed previously,
the 50th order expansion is adequate for shearing and shearing dominated flows, and it
is evident from Table 1 that it requires just over 3 times the computational effort of the
orientation tensor approach using the ORT closure. This is important, since our spherical
harmonic approach computes a fiber orientation solution to an accuracy previously available
only through the computationally prohibitive control volume simulations of the orientation
distribution function, but with the computational expense comparable to the orientation
tensor approach.

There is another interesting aspect to the spherical harmonic approach lending to a greater
robustness. A common point of concern with the control volume class of solutions stems from
the inherent spatial discretizing effect, which causes parts of the sphere that lie along the
boundaries of the mesh to be weighted unequally. In particular, meshes that treat the
“north” and “south” poles specially (for example, spherical coordinate finite meshes) will
be particularly susceptible. On the other hand, the function space spanned by Spherical
Harmonics is invariant under rotations of the sphere.

Next we consider calculations using the recently proposed orientation diffusion model of
Koch [15]. Solutions using the DFC approach are not presented as they would have required
computational efforts on the order of months to solve, and in particular they would yield
the identical numerical results as the Spherical Harmonic approach which is solved on the
order of seconds. Solutions using the orientation tensor approach are not considered either
since the second-order orientation tensor equation of motion for the Koch model requires a
second- to sixth-order closure (cf. the EBF closure of Jack and Smith [28]) and since Phelps
and Tucker [20] showed that these solutions are prone to yield non-physical results. Figure 4
shows the results of Jeffery’s equation with the Koch type diffusion [15] (cf. Equations (8)
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and (9)), with C1 = 0.0021, C2 = 0.075, and λ = 1 for the same shear flow described above.
This is a rather difficult case to model, because A11 approaches 0.934, which nears perfect
alignment. Note that this case was considered by Phelps and Tucker [20], which in their
Figure 2 corresponds to a volume fraction of fibers of vf = 0.01. We choose this particular
scenario to present since Phelps and Tucker were unable to produce physical results (that
is, A11 became greater than one) due to limitations of the closure methods they employed.
We solved the same problem using Spherical Harmonics of order L = 100, and compared the
answer to Spherical Harmonics of order L = 200.

We also consider the Folgar-Tucker diffusion combined with the reduced-strain closure
model described in Equations (39) and (40) above and results are illustrated in Figure 5.
We use the same parameters as given in Figure 4 of Wang et al. [19], namely CI = 0.01,
and κ = 0.1. Finally, Figure 6 shows Spherical Harmonics simulation results using the
Phelps-Tucker anisotropic rotary diffusion (cf. Equations (8) and (12)) combined with the
reduced-strain closure model described in Equation (37). We use the same parameters as
given in Figure 5 of Phelps and Tucker [20], namely b1 = 1.924 × 10−4, b2 = 5.839 × 10−3,
b3 = 4.0× 10−2, b4 = 1.168× 10−5, b5 = 0, and κ = 1/30. In all these examples, we used the
same shear flow described above with λ = 1, and Spherical Harmonics of order 50. In each
of these cases, we obtain results similar to the literature, but certainly not identical. This
difference is due to the methods employed in the literature, which rely on a moment tensor
closure approach thus only approximating the solution. As demonstrated above, the spherical
harmonic approach lends itself to accurate solutions provided the expansion truncation is
taken sufficiently large enough, as was done in each of the proceeding examples. Thus the
results from the spherical harmonic expansion can be considered ‘exact’ if the expansion is
taken sufficiently high.

8. Conclusions

We believe that the spherical harmonic method provides both speed and accuracy, that
it might either displace, or at least complement, the use of moment tensor closures in many
industrial settings. Results demonstrate that the Spherical Harmonic approach may retain
an accuracy only limited by machine precision, thus surpassing the moment tensor approach
which requires an approximation for higher order information. We provide a systematic
approach, so workers in the field should be able to quickly develop software to solve the
particular differential equations that they wish to investigate.
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Appendix A. Integration by Parts on the Sphere

Here we indicate a possible approach to proving Equations (13) and (15). Although the
approach we present is not “slick” (for example, using ideas from differential geometry such
as Stokes’ formula), we have found the presented approach to be rather concrete and reliable.

The idea is to consider any sequence of differentiable functions θn : [0,∞) → [0,∞) such
that for bounded continuous functions f , we have

∫

∞

0
f(x)θn(x) dx → f(1) as n → ∞,

and θn(x) is zero for x sufficiently close to zero and n sufficiently large. For example,
θ1(x) = 1

2
x2e−x, and θn(x) = nθ1(n(x− 1) + 1) if x > 1 − 1

n
and zero otherwise.

Then we note that
∫

S

f(r) dr = lim
n→∞

∫

R3

f

(

r

|r|

)

θn(|r|) dr, (A.1)

where the right hand side is the usual triple integral over r = (x, y, z). Then in this new
context, we define

∇f(r) = |r|
(

I − rr

|r|2
)

· ∂
∂r
f(r), (A.2)

where ∂
∂r

denotes the standard gradient operator in three dimensions. This formula is de-
signed so that if f is homogeneous of degree zero, that is, f(r) = f(r/|r|), then ∇f is also
homegenous of degree zero. Then Equation (13) follows from

∫

R3

f

(

r

|r|

)

· ∇g

(

r

|r|

)

θn(|r|) dr =

∫

R3

((

2
r

|r| − ∇

)

· f
(

r

|r|

))

g

(

r

|r|

)

θn(|r|) dr. (A.3)

This is a laborious but elementary computation, using the usual one dimensional integration
by parts. There are terms involving θ′n but these disappear at the end of the calculation.

Equation (15) is accomplished via Equation (13), setting Lf(r) = −i|r|−1r×∇f(r), and
noticing that Lf(r) = i∇ × (|r|−1rf(r)).

16



[1] Folgar, F.P., C. Tucker, Orientation Behavior of Fibers in Concentrated Suspensions,
Jn. of Reinforced Plastics and Composites 3 (1984) 98–119.

[2] Doi, M., Molecular Dynamics and Rheological Properties of Concentrated Solutions of
Rodlike Polymers in Isotropic and Liquid Crystalline Phases, Jn. of Polymer Science
Part B Polymer Physics 19 (1981) 229–243.

[3] Feng, J., L. Leal, Simulating Complex Flow of Liquid-Crystalling Polymers Using the
Doi Theory, Journal of Rheology 41 (6) (1997) 1317–1335.

[4] Chaubal, C.V., L. Leal, A Closure Approximation for Liquid-Crystalline Polymer Mod-
els Based on Parametric Density Estimation, Journal of Rheology 42 (1) (1998) 177–201.

[5] Girimaji, S.S., A New Perspective on Realizability of Turbulence Models, Journal of
Fluid Mechanics 512 (2004) 191–210.

[6] Forest, M.G., R. Zhou, Q. Wang, Nano-Rod Suspension Flows: A 2D Smoluchowski-
navier-Stokes Solver, International Jounral of Numerical Analysis and Modeling 4 (3-4)
(2007) 478–488.

[7] Upadhyay, R.R., O. Ezekoye, Treatment of Size-Dependent Aerosol Transport Processes
Using Quadrature Based Moment Methods, Journal of Aerosol Science 37 (7) (2005)
799–819.

[8] Bird, R. B., C. Curtiss, R. C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids,
2nd Edition, Vol. 2: Kinetic Theory, John Wiley & Sons, Inc., New York, NY, 1987.

[9] Petrie, C.J.S., The Rheology of Fibre Suspensions, Journal of Non-Newtonian Fluid
Mechanics 87 (1999) 369–402.

[10] Advani, S.G., C. Tucker, The Use of Tensors to Describe and Predict Fiber Orientation
in Short Fiber Composites, Jn. of Rheology 31 (8) (1987) 751–784.

[11] Altan, M.C., S. Subbiah, S. Guceri, R. Pipes, Numerical Prediction of Three-
Dimensional Fiber Orientation in Hele-Shaw Flows, Polymer Engineering and Science
30 (14) (1990) 848–859.

[12] Cintra, J. S., C. Tucker, Orthotropic Closure Approximations for Flow-Induced Fiber
Orientation, Jn. of Rheology 39 (6) (1995) 1095–1122.

[13] Jack, D.A., D. Smith, An Invariant Based Fitted Closure of the Sixth-order Orientation
Tensor for Modeling Short-Fiber Suspensions, Jn. of Rheology 49 (5) (2005) 1091–1116.

[14] Nguyen, N., S. Bapanapalli, J. Holbery, M. Smith, V. Kunc, B. Frame, J. Phelps,
C. Tucker, Fiber Length and orientation in Long-Fiber Injection-Molded Thermoplastics
- Part I: Modeling of Microstructure and Elastic Properties, Jn. of Composite Materials
42 (10) (2008) 1003–1029.

[15] Koch, D.L., A Model for Orientational Diffusion in Fiber Suspensions, Physics of Fluids
7 (8) (1995) 2086–2088.

17



[16] Phan-Thien, N., X.-J. Fan, R. Tanner, R. Zheng, Folgar-Tucker Constant for a Fibre
Suspension in a Newtonian Fluid, Journal of Non-Newtonian Fluid Mechanics 103

(2002) 251–260.

[17] Jack, D.A., Advanced Analysis of Short-fiber Polymer Composite Material Behavior,
Ph.D. thesis, University of Missouri - Columbia (December 2006).

[18] Jack, D.A., S. Montgomery-Smith, D. Smith, Anisotropic Diffusion Model for Suspen-
sions of Short-Fiber Composite Processes., in: The XVth International Congress on
Rheology, the Society of Rheology 80th Annual Meeting, The Society of Rheology,
Monterey, CA, 2008.

[19] Wang, J., J. O’Gara, C. Tucker, An Objective Model for Slow Orientation Kinetics in
Concentrated Fiber Suspensions: Theory and Rheological Evidence, Journal of Rheol-
ogy 52 (5) (2008) 1179–1200.

[20] Phelps, J.H., C. Tucker, An Anisotropic Rotary Diffusion Model for Fiber Orienation
in Short- and LongFiber Thermoplastics, Journal of Non-Newtonian Fluid Mechanics
156 (2009) 165–176.

[21] Bay, R.S., C. Tucker, Fiber Orientation in Simple Injection Moldings: Part 2 - Experi-
mental Results, in: Plastics and Plastic Composites: Material Properties, Part Perfor-
mance, and Process Simulation, ASME 1991, Vol. 29, American Society of Mechanical
Engineers, 1991, pp. 473–492.
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Table 1: Comparison of the computational effort to solve the equation of motion given in wall-clock seconds.

Hybrid ORT Spherical Spherical DFC
(L = 50) (L = 100)

tHi

Norm
8.1 × 10−2 1.4 × 10−1 4.8 × 10−1 1.8 × 100 3.5 × 103

tMean

Norm
7.3 × 10−2 1.3 × 10−1 4.3 × 10−1 1.7 × 100 8.4 × 102

tLow

Norm
7.0 × 10−2 1.2 × 10−1 3.7 × 10−1 1.3 × 100 2.4 × 101
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Figure 1: Results from numerical simulations of Jeffery’s Equation, λ = 0.98.
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Figure 2: Results from numerical simulations of Jeffery’s Equation with Folgar-Tucker Diffusion: DFC and
Spherical Harmonic results, (a) Elongational flow, CI = 10−3, (b) Shear flow, CI = 10−3.
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Figure 3: Results from numerical simulations of Jeffery’s Equation with Folgar-Tucker Diffusion for increasing
order of expansion: (a) Elongational flow, CI = 10−3, (b) Shear flow, CI = 10−3.
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Figure 4: Results of numerical simulation of Jeffery’s Equation with Koch diffusion, vf = 1%, λ = 1.
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Figure 5: Results of numerical simulation of Jeffery’s Equation with Folgar-Tucker diffusion and reduced-
strain closure.
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Figure 6: Results of numerical simulation of Jeffery’s Equation with Phelps-Tucker anisotropic rotary diffu-
sion, and reduced-strain closure.
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