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Abstract. We describe a particular con-

trol method for a system controlled by sev-

eral actuators with the same control con-
stants. We show under certain assumptions

that the control constants for the whole
system can be obtained immediately from

the control constants for a single actuator.

This greatly simplifies the work in finding
the control constants. Also, no gain sched-

uling is required. The authors have been

unable to find any prior work in this di-
rection, and so believe this is a rather new

approach.

1. Introduction

In this paper, we describe a system whose state,
which we will call the end effector position, is given
by an element of a differential manifold η ∈ M. We
suppose that the end effector position is determined
by the values of n actuators:

` = (`1, `2, . . . , `n) ∈ Rn. (1)

We write L : M → Rn for the function which maps
the end effector position to the actuator values. Note
that we can allow the problem to be over-constrained,
that is, n can be bigger or equal to the dimension of
M. Note that the elements ofM are generalized po-
sitions in the sense of the Euler-Lagrange formalism
[1].

Examples of these are cable-driven parallel robots,
consisting of a fixed rigid frame, and a floating rigid
body called the end effector. The end effector is
manipulated via eight cables attached to actuators.
Each actuator is clamped to the fixed frame. The
value, `k, of the kth actuator is the length of cable
issued by the actuator. The manifold M is the six
dimensional space of poses, that is, positions with ori-
entations. See [2, 3, 10] for an introduction to parallel
robots. See [8, 9] for information about cable-driven
parallel robots. The algorithm described in this paper
was tested upon a cable-driven parallel robot built by

Key words and phrases. Parallel actuator, linear control
theory, differential manifold, tangent bundle, cotangent bun-
dle, wrench set.

the NASA Johnson Space Center, which we describe
in another paper [7].

We assume that the only measurements we can
take are the values of the actuators, and that the
only method of control is to command a force at each
actuator, which converts into a force on the end ef-
fector. We assume that once the end effector force
is known, one can determine the trajectory of the
end effector via a frictionless, quadratic Hamiltonian
system. The force is a generalized force obeying the
principle of virtual work, and we will call it the end
effector force.

The method of control is to calculate the end ef-
fector position using the actuator values. Then, from
the difference of the actual end effector position from
the requested end effector position, is calculated the
required acceleration of the end effector. From this
is calculated the required end effector force. Finally,
we find the actuator forces to effect this.

Our main contribution is to show that the control
constants for computing the required acceleration of
the end effector are the same as the control constants
used to control a single actuator, making it easier to
determine the control method.

The benefit of this approach was demonstrated
when developing the cable-driven parallel robot that
is to be described in [7]. The control constants were
calculated having access to and performing trials upon
only one actuator. When the controller was tried on
the full parallel robot, it worked the first time. If we
had been forced to find the control constants by trial
and error for the whole system, this would have been
very difficult.

This result requires two things. First that the ac-
tuator response is linear. This would be violated if,
for example, if there is significant non-linear friction.
Second, it requires that the each actuator by itself
can be controlled by the same linear controller. For
example, with the cable-driven parallel robot, if there
is significant flexing or stretching of cables, this would
require a different control method for each actuator
because the orientations and/or lengths of the cables
aren’t necessarily identical.

Since the control constants can be found by con-
sidering a controller for a single actuator, then the
same control constants can be used irrespective of
the end effector position, that is, no gain scheduling
is required. Thus the formula for resonant frequencies
can also be calculated from the resonant frequencies
of a single actuator.
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We believe the methods and results in Sections 5
and 6, where we show that the control constants come
from those described in Section 4, are new. For this
reason, we know of no prior work in this direction,
and thus we have no references. But it is possible
that these methods were developed in a completely
different context, and that the author is simply un-
aware of them. (Early versions of this paper were
submitted to other control theory journals, and they
replied that this paper was out of their purview, sug-
gesting to the author that no-one else had considered
this approach.)

2. A brief primer on manifolds, tangent
bundles, and cotangent bundles

While there is a well known abstract definition
of a differential manifold (see, for example [6]), for
our purposes we will consider a manifold of dimen-
sion m to be the inverse image of zero under an
infinitely-differentiable function F : Rp → Rm−p,
whose Jacobian matrix is full rank in a neighborhood
of M = F−1(0).

Three examples of manifolds that are typically used
in robotics are the manifold of positions R3, the man-
ifold of orientations SO3, and the manifold of poses
SE3, which by identifying the set of three by three
matrices with R9, and the set of symmetric three by
three matrices with R6, are respectively created by

F1 : R3 → R0,

F1(x) = 0,

R3 = F−11 (0);
(2)

F2 : R9 → R7,

F2(R) = (RTR− I, det(R)− 1);

SO3 = F−12 (0);
(3)

F3 : R12 → R7,

F3(R, x) = (F2(R), F1(x)),

SE3 = F−13 (0).

(4)

To each point η ∈ M is associated its tangent
space TηM, that is, the m-dimensional subspace of
Rp which is tangent to the manifold at η. Thus TηM
can be thought of as the set of end effector velocities.
We call the disjoint union of all tangent spaces the
tangent bundle TM =

⋃
η∈M TηM.

Also associated to each point η ∈ M is the dual
space to the tangent space, which is called the cotan-
gent space, and is denoted T ∗ηM. Thus T ∗ηM can be

thought of as the set of end effector forces that can
be applied to the end effector, with the duality de-
fined as mapping an end effector velocity and an end
effector to their inner product, the rate of change of
work done by the end effector. The disjoint union of
the cotangent spaces is called the cotangent bundle
TM =

⋃
η∈M TηM.

In the first example R3 = F−11 (0), the tangent
space is the set of translational velocities, and the
cotangent space is the set of forces. In the second
example SO3 = F−12 (0), the tangent space can be
identified with the set of angular velocities, and the
cotangent space with the set of torques. In the third
example SE3 = F−13 (0), the tangent space can be
identified with the set of twists, and the cotangent
space with the set of wrenches.

3. Mathematical description of the system

Given the position of the end effector that is a
function of time, η(t), we have its velocity and accel-
eration which are functions of time taking their values
in TM given by

ϕ = η̇, α = ϕ̇. (5)

We define the linear operator Λη : TηM→ Rn by the
directional derivative, which in local coordinates is

Ληθ = θ · dL(η)

dη
. (6)

Often we simply write Λ for Λη when there is no
confusion.

Then, from the velocity ϕ, we can calculate the
rate of change of the actuator values:

˙̀ = Ληϕ. (7)

We suppose that there is a linear operator T =
Tη : Rn → T ∗M, which converts actuator forces f =
(f1, f2, . . . , fn) to the end effector force τ :

τ = Tηf . (8)

By the principle of virtual work, we have

ϕ · Tηf = ˙̀ · f = Ληϕ · f . (9)

Hence

Tη = ΛTη . (10)

Next we describe the equations of motion. Sup-
pose that the system is given by a Lagrangian

l(η, ϕ) = 1
2Mη(ϕ,ϕ)− v(η), (11)

where Mη = M is a positive definite bilinear oper-
ator on TηM. This includes kinetic energy of the
actuators

1
2m0| ˙̀|2, (12)

2



where m0 is the effective mass of the each actuator
(the notion of ‘effective’ is explained in Section 4 be-
low). In local coordinates we can describe Λ and M
as matrices, then the kinetic energy of the actuators
is given by

1
2m0ϕ

TΛTΛϕ, (13)

and so we must have that the matrix

M −m0ΛTΛ (14)

is positive semi-definite.
Solving the Euler-Lagrange equations [1], we ob-

tain the equations of motion

τ = Mα+ µ(η), (15)

where in local coordinates

µ(η) = ϕ · ∂Mη

∂η
(ϕ, ·)− ∂

∂η
v(η). (16)

We define the no-load forces to be the actuator
forces if the actuators are not attached to the sys-
tem, that is, the Lagrangian is given simply by equa-
tion (12):

f0 = m0
῭. (17)

Thus differentiating equation (7), we obtain (in local
coordinates)

f0 = m0Ληα+m0ϕ ·
dΛη
dη

ϕ. (18)

For the example of the cable-driven parallel robot,
the cable tensions are given by

cable tensions = f0 − f . (19)

Next, we need inverse functions to L and T , which
we call Y and F . We define the set of admissible
actuator values, L ⊂ Rn, to be the range of the func-
tion L. We suppose that we have a forward kinemat-
ics function, Y : L → M, which is a left inverse to
L. Because of possible measurement errors, Y should
produce decent answers even if the actuator values
are merely close to L. For example, this could be
implemented using the Newton-Raphson Method.

For the inverse function of T , we need some more
definitions. Given fb,f0 ∈ Rn, we suppose that we
have a predefined set Cfb,f0

⊂ Rn. Here fb is the
command force required to overcome actuator resis-
tance such as back-EMF, f0 is the no-load actuator
forces, and Cfb,f0 is the set of those f such that it is
permissible to command forces f + fb to the actua-
tors.

Typically this is a convex set defined by a finite
number of linear constraints. For the example of
cable-driven parallel robots, we might say f ∈ Cfb,f0

if and only if the tensions in the cables, f0−f , is never
below a given predefined value, and the command

forces ±(f + fb) don’t exceed the actuator hardware
limits.

Then we define the wrench set to be the set of
achievable forces:

W = {(τ,fb,f0) ∈ T ∗M× Rn × Rn :

∃f ∈ Cfb,f0
such that Tf = τ}. (20)

We suppose that we have a function F : W × Rn ×
Rn → Rn that provides a right inverse to the map
defined by T in the following manner:

T (F (τ,fb,f0)) = τ, (21)

such that

F (τ,fb,f0) ∈ Cfb,f0 . (22)

Because there are more actuators than the number
of degrees of freedom (that is, the dimension of M,
computing the actuator forces in the last step is an
over-constrained problem. For the example of cable-
driven cable robots, there are many approaches in the
literature [4, 5, 8].

Finally we need a way to approximate the differ-
ence between two end effector positions by an element
of the tangent space. That is, there is a function
4 :M×M→ TM such that 4(η1, η2) is in Tη1M,
so that with respect to a ‘reasonable’ coordinate sys-
tem about η1 that

η2 ≈ η1 +4(η1, η2). (23)

For example, if M is a Riemannian manifold, we
could define it as the direction of a geodesic from
η1 to η2. If M is a Lie group, we could define it as
the direction of a one parameter subgroup from η1 to
η2. With the example of SO3, the latter can be iden-
tified with angle of rotation from one to the other,
multiplied by the unit vector in the direction of the
axis of this rotation.

4. Control of a single actuator

Let ` denote actuator value, let fc be the command
force given to a single actuator, and f be the actual
force supplied by this actuator.

Each actuator has an effective no-load mass m0,
which is the ratio f/῭ when there is no load placed
upon the actuator.

For the remainder of this section, we suppose that
the actuator is carrying a passive load. We denote
by m to be the effective mass of the actuator with
this load. Thus no load corresponds to m = m0,
and we always have m ≥ m0. If the actuator is
clamped so that it cannot move, this corresponds to
m = ∞, which is a mathematical idealization repre-
senting when the passive load is very large.
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For the purpose of making the analogue of these
equations and the system controller equations clearer,
we shall replace the actuator actual and command
forces by actual and command accelerations

a =
f

m
= ῭, (24)

ac =
fc
m
. (25)

We look for a controller such that, given an actua-
tor value `r, attempts to create a command accelera-
tion ac such that the actual actuator value, `, is close
to `r.

First we describe an open-loop controller:

fc = m῭
r + k0 ˙̀

r, (26)

or

ac = ῭
r +

k0
m

˙̀
r. (27)

We call k0 the back-EMF constant, since for electric
motors this is a likely source of this term. This con-
troller fails badly if there is any drift or noise in the
system, because it makes no attempt to correct for
error.

Next, suppose we also have a good homogeneous
closed-loop controller. Denote the vector containing
all time derivatives of order less than l of ` by

` = [`, ˙̀, ῭, . . . , `(l−1)]T . (28)

The controller is defined by appropriately sized con-
stant matrices A, B, C, and D as:

ẋ = Ax+B` (29)

ac = Cx+D`. (30)

By a good homogeneous closed-loop controller, we
mean that if this is used to control the passively
loaded actuator, then ` converges to 0 in a manner
that is expeditious enough for our application.

An example is a PID controller

ac = −(ki
∫
`+ kp`+ kd ˙̀), (31)

But it could be something more complex, such as a
cascaded controller, or a linear quadratic Gaussian
controller.

Note that if cable stretching or sagging plays a sig-
nificant role in the cable-driven parallel robot, then
this should be able to control a single actuator with
a cable with similar stretching or sagging character-
istics attached.

The results of this paper don’t depend upon what
definition of ‘good’ we use. Our assertion is that the
parallel actuator driven robot controller behaves as
well as the single actuator controller. Thus if the
user knows the level of precision or stability required

for the whole system, they merely have to check these
same parameters for the single actuator.

We combine the open-loop and homogeneous closed-
loop controller to obtain a good closed-loop feed-forward
controller, that is, given a requested actuator value
`r, and its vector of derivatives

`r = [`r, ˙̀
r, ῭

r, . . . , `
(l−1)
r ]T , (32)

we find the command acceleration ac such that ` con-
verges to `r in an expeditious manner. This can
be created by applying the homogeneous closed-loop
controller to

`d = `− `r (33)

`d = `− `r (34)

to obtain

ẋ = Ax+B`d (35)

ac = ῭
r +

k0
m

˙̀
r + Cx+D`d. (36)

For example, with the PID controller it is

ac = ῭
r +

k0
m

˙̀
r − (ki

∫
`d + kp`d + kd ˙̀

d). (37)

5. The controller for the system by
parallel actuators

For the controller, we introduce the state vector ξ,
which is a vector of elements from the tangent space,
with the same number of components as the state
vector x described in equation (29). We denote a
matrix multiplied by a vector of elements from the
tangent space as giving another vector of elements of
the tangent space as follows:

(Aξ)i :=
∑
j

Ai,jξj , (38)

where ξj means the jth component of ξ.
The control loop is shown as a block diagram in

Figure 1. It is labeled throughout with superscript
numbers that correspond to the steps given below.

(1) Obtain the requested end effector position ηr.
(2) Compute the requested acceleration

αr = η̈r. (39)

(3) Measure actuator values `.
(4) Calculate the actual end effector position:

η = Y (`). (40)

(5) Find the 4 difference between the actual end
effector position and the requested end effec-
tor position:

θd = 4(η, ηr) (41)
4



ηr
(1)

4(5)

Controller(6)

θd

+(7)

αd

αc

End effector
force

calculator
µ+M×(8)

Actuator
command
calculator
F (11)

τ

+(12)

fp

Actuators(3)

fc
Forward

kinematics
Y (4)

`

d2

dt2

(2)

αr

Compute
no-load
actuator
force(10)

f0

η

Calculate
resistance

overcoming
part of

command
force(9)

fb

Figure 1. Block diagram of the
controller for the robot driven by
parallel actuators.

and compute the vector of derivatives

θd = [θd, θ̇d, θ̈d, . . . , θ
(l−1)
d ]T . (42)

(6) Calculate the control part of the command
end effector acceleration:

ξ̇ = Aξ +Bθd (43)

αd = Cξ +Dθd. (44)

For example, the PID controller would be:

αd = −(ki
∫
θd + kpθd + kdθ̇d). (45)

(7) Calculate the command end effector acceler-
ation:

αc = αr + αd. (46)

(8) Determine the command end effector force to
be applied to the end effector:

τc = µ+Mαc. (47)

(9) Calculate the requested rate of change of the
lengths of the cables

˙̀
r = Λ(ηr)ϕr, (48)

and find the resistance overcoming part of the
command force for the actuators

fb = k0 ˙̀
r. (49)

(10) Use equation (18) to calculate the no-load ac-
tuator forces.

f0 = m0Ληαc +m0ϕ ·
dΛη
dη

ϕ. (50)

(11) Determine whether (τc,fb,f0) ∈ W. If it
isn’t, declare that the end effector is out of its
workspace, command the actuators to brake,
and quit. Otherwise, calculate part of the
actuator forces using

fp = F (τc,fb,f0). (51)

(12) Command the actuators with

fc = fp + fb. (52)

(13) Go back to Step 1.

Note that in Steps 8, 10, and 11, the quantities M , µ,
Λ, W, and F are calculated from η and ϕ, but they
could just as well be calculated from ηr and ϕr, the
only change required being to equation (41) to

θd = −4 (ηr, η) (53)

6. Theoretical justification for the
controller

Assumption 1. The interaction between the com-
mand force fc, the actual force f , and the actuator
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value ` of a single actuator, is given by the linear
system

f + c2ḟ + · · ·+ cnf
(n−1)

+ k0 ˙̀ + k1 ῭+ · · ·+ kn`
(n+1)

= fc + c̃2ḟc + · · ·+ c̃pf
(p−1)
c . (54)

Note this linearity can be difficult to achieve if fric-
tion is significant in the actuators. Friction is highly
non-linear, especially when ˙̀ and f switch between
having the same sign and having different signs, as
could happen with an active load.

If the actuator has a passive load m as described
in Section 4, then equation (54) becomes

῭+ c2`
(3) + · · ·+ cn`

(n+1)

+ k0
m

˙̀ + k1
m

῭+ · · ·+ kn
m `

(n+1)

= ac + c̃2ȧc + · · ·+ c̃pa
(p−1)
c . (55)

The original open-loop controller was derived from
the assumption that equation (54) is a perfect de-
scription of the passively loaded actuator:

fc + c̃2ḟc + · · ·+ c̃pf
(p−1)
c

= m(῭
r + c2`

(3)
r + · · ·+ cn`

(n+1)
r )

+ k0 ˙̀
r + k1 ῭

r + · · ·+ kn`
(n+1)
r , (56)

which in Section 4 was approximated with equation (26).

Assumption 2. For every m ∈ [m0,∞], equations (33),
(34), (35) and (36) provide a good closed-loop feed-
forward controller for system (55).

This assumption can either be tested theoretically
using eigenvalue analysis, or experimentally by load-
ing various passive loads onto a single actuator. The
latter approach doesn’t require any knowledge of the
coefficients in equation (54). We simply need to be-
lieve that such an equation exists.

Assumption 3. The time scale of the corrections θd
is much smaller than the time change of ηr, and the
magnitude of θd and its derivatives are much smaller
than that of η and its corresponding derivatives. This
means we can assume that the time derivatives of η
are negligible compared to η, and hence we can as-
sume the matrices M , F , and the covector µ, and
their derivatives, are constant in the time scales in
which the controller operates. We also assume that
equation (23) holds for time derivatives of both sides,
and that the constants are uniformly controlled in the
ranges achieved.

The main result of this paper, which we state be-
low, is described as an ‘assertion’ rather than a ‘the-
orem,’ as the proofs are not very rigorous.

Assertion 1. Given Assumptions 1, 2, and 3, the
algorithm described in Section 5 is a good controller
for the parallel actuator driven robot.

Pick a time t0 which is in the range of times in
which the controller performs the required correc-
tions. Let η0 = η(t0). Define

θ = 4(η, η0) (57)

θr = 4(ηr, η0). (58)

Thus

η ≈ η0 + θ (59)

ηr ≈ η0 + θr, (60)

and if we set

ϕr = η̇ (61)

then

ϕ ≈ θ̇ (62)

ϕr ≈ θ̇r, (63)

and we have

θd ≈ θ − θr. (64)

Let nM be the dimension of M, and define the
(nM × nM) matrix

N = M−1ΛTΛ. (65)

Assertion 2. With the same assumptions as Asser-
tion 1, if the end effector is controlled by the algo-
rithm given in Section 5, then we have

θ̈ + c2θ
(3) + · · ·+ cnθ

(n+1)

+N(k0θ̇ + k1θ̈ + · · ·+ knθ
(n+1))

≈ αc + c̃2α̇c + · · ·+ c̃pα
(p−1)
c (66)

where

αc ≈ α̂c + k0Nθ̇r (67)

and α̂c is calculated thus:

θd = [θd, θ̇d, θ̈d, . . . , θ
(l−1)
d ]T (68)

ξ̇ = Aξ +Bθd (69)

α̂c = αr + Cξ +Dθd. (70)

Proof: Rewrite equation (54) for the jth actuator:

fj + c2ḟj + · · ·+ cnf
(n−1)
j

+ k0 ˙̀
j + k1 ῭

j + · · ·+ kn`
(n+1)
j

= fc,j + c̃2ḟc,j + · · ·+ c̃pf
(p−1)
c,j . (71)

From equations (7), (49), (51), (52), and (63), we
obtain

fc,j = Fj(τc, f̄c) + k0Λθ̇, (72)
6



and applying T = ΛT we obtain

Tfc = τc + k0ΛTΛθ̇r. (73)

Similarly, from equations (7) and (62), we have

Tf = τ, (74)

where τ is the actual end effector force, and

T ˙̀ = ΛTΛθ̇. (75)

Hence from Assumption 3, we obtain

τ + c2τ̇ + · · ·+ cnτ
(n−1)

+ ΛTΛ(k0θ̇ + k1θ̈ + · · ·+ knθ
(n+1))

≈ τc + k0ΛTΛθ̇r + c̃2(τ̇c + k0ΛTΛθ̈r)+

· · ·+ c̃p(τ
(p−1)
c + k0ΛTΛθ(p)r ). (76)

Next, subtracting µ, and then left multiplying by
M−1, and using Assumption 3 again, we obtain equa-
tion (66). The rest of the assertion follows by equa-
tion (64). Q.E.D.

Lemma 1. The matrix N has a basis of eigenvectors,
with eigenvalues in [0,m−10 ].

Proof: Let

Ñ = M−1/2ΛTΛM−1/2. (77)

Clearly Ñ is symmetric and positive semi-definite,
and since M −m0ΛTΛ is positive definite, we have

m−10 I − Ñ = m−10 M−1/2(M −m0ΛTΛ)M−1/2 (78)

is positive definite. (Here I denotes the (nM × nM)

identity matrix.) Hence Ñ has a basis of eigenvectors,
with eigenvalues in [0,m−10 ]. Also,

N = M−1/2ÑM1/2, (79)

and hence N and Ñ are similar matrices. Q.E.D.

Proof of Assertion 1: We use Lemma 1 to obtain σ1,
σ2, . . . , σnM a basis of eigenvectors of N , with cor-
responding eigenvalues m−11 , m−12 , . . . ,m−1nM

, where
m1, m2, . . . ,mnM ∈ [m0,∞]. We also form a dual
basis π1, π2, . . . , πnM that satisfies

σi · πj =

®
1 if i = j

0 if i 6= j,
(80)

so that for any ψ ∈ RnM we have

ψ =

nM∑
i=1

(ψ · πi)σi (81)

πi ·Nβ = m−1i (πi · β). (82)

By Assumption 3, we can assume that all these vec-
tors and eigenvalues are constant. For each 1 ≤ i ≤
nM, dot product the equations in Assertion 2 by πi.

Then it may be seen that the resulting equations sat-
isfy the hypotheses of Assumption 2, with y replaced
by θ · πi, with yr replaced by θr · πi, and with m re-
placed by mi. Thus θ · πi is well controlled by θr · πi.

Then it follows by equation (81) that θ is well con-
trolled by θr. Therefore by equations (59) and (60),
we have that η is well controlled by ηr. Q.E.D.

7. Conclusions

We have shown, under certain assumptions, that
the control constants for a system of several parallel
actuators can be derived simply from knowledge of
the control constants of a single actuator. The ben-
efit of this is that finding the control constants for a
single actuator is much easier than finding the con-
trol constants for the whole system. Also, we can
show that no gain scheduling is required, that is, the
control constants do not require adjusting depending
upon where the end effector lies.

The assumptions are (1) that each actuator has
a linear response to commands, (2) that the time
and distance scales of the control changes are much
smaller than the respective scales of the requested po-
sition, and (3) that the control constants work well no
matter what passive load is placed upon each single
actuator. Also, (4) there is also the implicit assump-
tion that the same control constants work for each of
the actuators.

The first assumption seems to be very important,
in particular, our limited experience is that this ap-
proach does not work well if the effect of friction is
large. The fourth assumption means that this ap-
proach can be flawed if there are other non-proportional
links in the mechanism between the actuator and end
effector, for example, if there is a stretchable cable be-
tween them, and the lengths of the cables are different
for different actuators.

Even with these limitations, we do believe that
this approach is definitely of theoretical interest. And
perhaps future work can overcome some of these dif-
ficulties.
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