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Abstract. Examples of physically reasonable Gaussian, homogeneous, isotropic,

three-dimensional, incompressible statistics with longitudinal correlation neg-

ative for some separation interval are presented. The negativity of the longitu-

dinal correlation persists in the Galerkin approximation of the hydrodynamic

equations, at least for some time. Both the outline of the mathematical argu-

ments and the numerical implementation are included.

1. Introduction

The longitudinal correlation function of homogeneous and isotropic flows is the
correlation of the velocity components parallel to the separation vector as a function
of the separation distance. For incompressible flows this function determines all
components of the correlation, see Batchelor (1953), p. 46. Kolmogorov (1941)
examines the longitudinal correlation and its derivatives at zero separation before
formulating the famous hypotheses on the statistics of locally homogeneous and
isotropic turbulence.

Based on measurements, it is often accepted as a fact that this longitudinal
correlation function is strictly positive for all separation lengths. For example
Batchelor (1953), p. 48, for f the longitudinal correlation and r the separation
distance, notes: “A demonstration that f(r) > 0 for all values of r has never been
given, but it is a very plausible result for an incompressible fluid and is consistent
with all measurements of f(r).” On the other hand, disagreements between what
is measured and what is expected from theory have been explained as deviations
from exact isotropy, see for example Comte-Bellot & Corrsin (1971), pp. 293 –294.

The theoretical possibility of negative f for exactly isotropic statistics has been
noted for flows with Dirac energy spectra in Davidson (2004), p. 328, and such
flows have been dismissed, quite rightly, as unrealistic. The authors are not aware
of any previous theoretical investigation of the positivity of f based on clearly stated
assumptions. To the extent that f > 0 is the basis of investigations regarding the
shape of the energy spectrum at the origin, the existence of integral invariants of
flows, and the energy decay laws, e.g. Gustafsson & George (2008), § 3.1, the
problem merits reexamination.

While attempting to provide a rigorous proof of Batchelor’s “plausible result”
for realistic isotropic flows, the authors noticed that it possible to produce exam-
ples of homogeneous and isotropic Gaussian statistics with negative longitudinal
correlations. These examples are presented in § 2.

The examples are random combinations of the eigenfunctions of the correlation.
To avoid the impression that such statistics assign non-zero probability only to
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physically spurious configurations, it is shown that any smooth, solenoidal field
which vanishes outside a bounded domain is surrounded by fields that occur with
non-zero probability.

Given that “random Gaussian modes represent a perfectly legitimate initial con-
dition” for admissible flows, (Ishida, Davidson, & Kaneda (2006), p. 457), the
examples of § 2 here are used to initialize Galerkin flow approximations of Navier-
Stokes statistics. And it is shown in § 3 that, on some time interval, the longitudinal
correlation of these flows remains negative on whole intervals of separation.

A numerical implementation for the periodic case and the numerical simulation
of the corresponding flow evolution are presented in § 4.

2. Gaussian Homogeneous and Isotropic Random fields

2.1. The construction. This section constructs isotropic statistics with longitu-
dinal correlation not everywhere positive. The construction starts with choosing a
reasonable candidate for the correlation ui(x)uj(x + h) for the i and j components
of the random u, cf. Yaglom (1957), § 4.

For each h in 3-space, and setting h = |h|, define

Bij(h) =

∫ ∞

0

{[
3 sin(kh)

(kh)3
−

3 cos(kh)

(kh)2
−

sin(kh)

kh

]
hihj

h2
(1)

+

[
cos(kh)

(kh)2
−

sin(kh)

(kh)3
+

sin(kh)

kh

]
δij

}
Φ′(k) dk,(2)

i, j = 1, 2, 3, for any Φ : [0, +∞) → [0, +∞) non decreasing, differentiable on (0,∞),
with Φ(0) = 0, and satisfying

∫ ∞

0

Φ′(k)dk < ∞.(3)

(For isotropic fields that will be constructed from Bij , it can be seen that Φ′ is the
energy spectrum function E.) Then formulas (4.20) and (4.25) in Yaglom (1957)
yield

Bij(h) =

∫

R3

eik·h

(
δij −

kikj

|k|2

)
Φ′(|k|) dk.(4)

Consider now fields u(x) = (u1(x), u2(x), u3(x)), x = (x1, x2, x3) on 3-space, not
necessarily solenoidal, and with the property that

∫

R3

(
1 + |x|2

)r
|u(x)|2 dx, r < − 3

2 ,(5)

is finite. The restriction on r implies that the “weight”
(
1 + |x|2

)r
has finite integral

over R
3. Such a weight is necessary for non-trivial homogeneous statistics to exist,

see Vishik & Fursikov (1988), p. 208. In addition to fields with spatial decay,
constant and periodic fields, amongst others, satisfy (5).

For any field u satisfying (5) define Bu by

(Bu(y))i =

3∑

j=1

∫

R3

Bij(x − y)uj(x)(1 + |x|2)r dx.(6)

Let {en} be the eigenfunctions of B and {kn} the corresponding eigenvalues. (Dos-
toglou & Gastler (2009) explains why these exist and why kn ≥ 0.)
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For fn a sequence of independent, Gaussian, real-valued random variables, dis-
tributed as N(0, 1), consider the ensemble of fields of the form

u(x) =
∑

n≥0

√
knfnen(x).(7)

By construction, the Bij ’s satisfy

3∑

j=1

∂jBij = 0(8)

for all i. This yields B(∇φ) = 0 for any test function φ and it shows that the
summation in (7) takes place only over divergence-free elements. That is, the
ensemble consists purely of solenoidal fields.

This turbulence field has Gaussian statistics with zero mean and correlation B:

< Bv1,v2 >= < u,v1 >< u,v2 >,(9)

see, for example, Bogachev (1998), p. 49. In addition, the field is homogeneous
and isotropic: As a Gaussian field of mean zero, its statistics are determined by B
which, by construction, is invariant under translations and rotations, see Dostoglou
& Gastler (2009).

2.1.1. Averages. All overlines denote here ensemble averages. Nevertheless, the cor-
relations constructed are decaying in space. For homogeneous statistics, this decay,
regardless of rate, guarantees that ensemble averages equal (for almost all fields)
the space averages used in measurements or numerical simulations, see Androulakis
& Dostoglou (2004), p. 8, Theorem 4.6, and Tempelman (1992), p. 66, Corollary
2.7.

2.2. The longitudinal correlation. For eL a unit vector, h a positive number,
and uL the projection of u on eL, the longitudinal correlation function

BLL(h) = uL(x + heL)uL(x)(10)

corresponding to (1) is

BLL(h) =

∫ ∞

0

[
2 sin(hk)

(hk)3
−

2 cos(hk)

(hk)2

]
Φ′(k)dk,(11)

see Yaglom (1957), p. 305. Choosing

(12) Φ(k) =






0 if 0 ≤ k < 3π/2
A(1 + cos(2k)) if 3π/2 ≤ k ≤ 2π
2A if 2π < k,

where A > 0 is an arbitrary constant, all conditions for (1) are satisfied and (11)
becomes

BLL(h) = −4A

∫ 2π

3π/2

[
sin(hk)

(hk)3
−

cos(hk)

(hk)2

]
sin(2k) dk.(13)

As

BLL(1) = −4A

∫ 2π

3π/2

[
sin k

k3
−

cos k

k2

]
sin(2k) dk < 0,(14)

and BLL is continuous,

BLL(h) < 0,(15)
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for all h in some interval. A slight modification exhibits a whole family Φǫ, ǫ ≤ ǫ0,
such that Φǫ > 0 for all k and the longitudinal correlations Bǫ

LL are arbitrarily
negative on intervals.

Therefore, for this choice of Φ, the fields constructed in the previous section
are Gaussian, homogeneous, isotropic, solenoidal, and have negative longitudinal
correlation on intervals.

2.3. The physical relevance of the random fields. An important feature of
the ensemble (7) is that it contains realistic fields. It makes, of course, no sense to
claim that a certain field occurs with non-zero probability. What does make sense
is to identify fields with the property that any open sub-ensemble containing the
field, no matter how small, has non-zero probability to occur. Call a field with this
property realizable.

All smooth, divergence free fields vanishing outside a bounded domain of R
3 are

realizable for (7). To see this, recall from Itô (1970) that, as a Gaussian ensem-
ble, the elements of (7) that are realizable are precisely those elements that are
orthogonal, with respect to (5), to all v satisfying

< Bv,v >= 0.(16)

This, by (4), is the same as

∫

R3

(
|φ̃|2(k) −

|k · φ̃(k)|2

|k|2

)
Φ′(|k|)dk = 0,(17)

for φ(x) = (1 + |x|2)rv(x) and φ̃ is its Fourier transform.

For Φ′ > 0 everywhere, it follows that (16) is satisfied by v’s such that φ̃(k) =
M(k)k for all k, with M square integrable, by Dostoglou & Gastler (2009). One
then obtains an m such that ∇m = φ. Therefore, realizable elements of the ensem-
ble are orthogonal to gradients and, in particular, all solenoidal square integrable
fields are realizable.

3. Galerkin approximation and time evolution

Dostoglou, Fursikov & Kahl (2006) obtains homogeneous and isotropic ensembles
P of Navier-Stokes flows on any finite time interval as the limit of homogeneous
and isotropic ensembles Pl,n of Galerkin flows approximating the Navier-Stokes
flow, as l, n → ∞. The Galerkin flows take place on divergence-free, vector valued
trigonometric polynomials of degree n and period 2l:

Ml,n =

{ ∑

|k|≤n

akeik·x : ak · k = 0, ak = a−k, k ∈
π

l
Z

3

}
,(18)

augmented with all its rotations to a space M̂l,n. The Navier-Stokes flow is ap-
proximated at each step by

∂tu − ν∆u + P̂l,n[(u,∇)u] = 0,(19)

where P̂l,n projects onto M̂l,n.
The correlation of the (l, n)-Galerkin ensemble Pl,n at time t

B
(l,n)
ij (t,h) = ui(t,x)uj(t,x + h)(20)
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is continuous in t, see Dostoglou & Gastler (2009). This relies on the fact that
the only realizable elements of Pl,n are continuous in t. The argument does not
use the evolution equation for the correlations as these equations suffer from the
well-known closure problem. The argument breaks down for the correlation of the
ensemble P itself, as it might contain realizable elements that are not continuous
in t. No rigorous proof exists at this point that the Galerkin correlations at time
t > 0 converge to the correlation of P .

Now since isotropic correlations satisfy

Bij(h) = [BLL(h) − BKK(h)]
hihj

h2
+ BKK(h)δij(21)

for some appropriate function BKK , (for example, see Yaglom (1957), formula
(4.36), p. 305), then

B11(h, 0, 0) = BLL(h).(22)

On the other hand,

B
(l,n)
ij (0,h) → Bij(0,h), l, n → ∞,(23)

see Dostoglou & Kahl (2009). Therefore B
(l,n)
LL (0, h) is negative on h-intervals, for

l and n large enough. And B
(l,n)
LL is continuous in time by the continuity of B

(l,n)
ij

and (22). Therefore, starting with the example of § 2.2 as initial condition, for l
and n large enough

B
(l,n)
LL (t, h) < 0,(24)

on h-intervals and for t ∈ [0, tl,n).

4. Numerical implementation

For v a (possibly random) field that is 2l periodic

v(x) =
∑

k∈πl−1Z3

v̂keix·k,(25)

define a random field by

u(x) = Wv(W−1(x − ξ)),(26)

where W is a randomly chosen rotation matrix (using the standard probability law
on the group of rotation matrices), and ξ is chosen uniformly from [0, 2l]3. Thus u

is distributed according to a homogeneous, isotropic distribution, and

Bij(h) = ui(·)uj(· − h)(27)

and Φ in equation (1) is now replaced by the (not differentiable any more)

Φ(k) =
∑

k∈πl−1Z3:|k|<k

1
2 |v̂k|2.(28)

Furthermore

BLL(h) =
∑

k∈πl−1Z3

1
2 |v̂k|2

(
2 sin(hk)

(hk)3
−

2 cos(hk)

(hk)2

)
.(29)

For example, suppose that v is chosen randomly using

v̂k = σ|k|Pk(γk,1, γk,2, γk,3).(30)



6 S. DOSTOGLOU, R.R. GASTLER AND S. MONTGOMERY-SMITH

9 10 11 12
k

0.2

0.4

0.6

0.8

1.0

FHkL, YHkL

Figure 1. A graph showing the similarity between Ψ(k) given by
by equation (32), and the resulting Φ(k) derived from equa-
tion (28).

Here Pkw = w − |k|−2w · kk and γk,1, γk,2, γk,3 are independent mean zero,
variance one, complex Gaussian random variables. The complete joint distribution
between all the γk,i’s is not specified, although in all numerical simulations they
are independent, except, of course, that v̂k is the complex conjugate of v̂−k. Then

1
2 |v̂k|

2 = |σ|k||
2.(31)

Now for the case l = π, set

(32) Ψ(k) =






0 if k < 8
1
2 (1 − cos(2πk/8)) if 8 ≤ k ≤ 12
1 if k > 12

and set

σk =

(
Ψ′(k)

4πk2

)1/2

.(33)

Then Φ(k) and Ψ(k) are related as in figure 1.
A sample v was chosen using the distribution equation 30, and it was assumed

that u was built as described in equation 26. Putting this into a numerical sim-
ulation of the Navier-Stokes equation, with n = 31, and viscosity equal to 10−4,
and noting that solving the Navier-Stokes for u is equivalent to solving the Navier-
Stokes equation for v and then applying equation 26 to the solution obtained, the
plots of f(h) = BLL(h)/BLL(0) for various values of t are shown in figures 2, 3, 4
and 5. It can be seen that the non-positivity of f(h) seems to persist until at least
t = 2. After t = 2 the precision of the numerical calculations becomes doubtful,
or the possibility of negativity might be an artifact of the Gibbs phenomenon as
suggested by the apparent lack of smoothness of the graphs in figure 5.

The complete software and data can be downloaded at:
http://www.math.missouri.edu/∼stephen/navier3d/navier3d-1.1-d.tar.

gz
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Figure 2. Time evolution of f(h) = BLL(h)/BLL(0) for 0 ≤ h ≤
0.8, 0 ≤ t ≤ 0.4:
——, t=0; — —, t=0.1; – – –, t=0.4; · − ·−, t=0.3; · · · · · · , t=0.4;
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Figure 3. Time evolution of f(h) = BLL(h)/BLL(0) for 0.8 ≤
h ≤ 1.2, 0 ≤ t ≤ 0.4:
——, t=0; — —, t=0.1; – – –, t=0.4; · − ·−, t=0.3; · · · · · · , t=0.4;
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Figure 4. Time evolution of f(h) = BLL(h)/BLL(0) for 1.2 ≤
h ≤ 1.5, 0.4 ≤ t ≤ 0.8:
——, t=0.4; — —, t=0.5; – – –, t=0.6; ·−·−, t=0.7; · · · · · · , t=0.8;
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Figure 5. Time evolution of f(h) = BLL(h)/BLL(0) for 1.5 ≤
h ≤ 3, 1 ≤ t ≤ 3:
——, t=1; — —, t=1.5; – – –, t=2; · − ·−, t=2.5; · · · · · · , t=3;

5. Conclusion

To the extent that Gaussian initial conditions are acceptable and Galerkin ap-
proximations are widely used for numerical results, the possibility of negative cor-
relation remains. In experiments, “fully developed turbulence” is created by a
process that agitates the fluid for some length of time. Then immediately after the
agitation ceases, and only then, the measurements are taken. Thus it would seem
reasonable that the class of possibilities for the profile of the fluid velocity would
be more restrictive than that it is merely isotropic, homogeneous and/or Gaussian.
While some readers might regard the example presented here as an exotic velocity
field, this paper does raise the question as to why it should be considered exotic.
That is, what is the new property that should be considered, that this velocity field
violates.
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