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Abstract

In this paper we present a decoupling inequality that shows that multivariate U-
statistics can be studied as sums of (conditionally) independent random variables. This
result has important implications in several areas of probability and statistics including
the study random graphs and multiple stochastic integration. More precisely, we get the
following result:

Theorem 1. Let {X;} be a sequence of independent random variables in a measurable
space (S,.9), and let {Xi(J)}, j =1,....,k be k independent copies of {X;}. Let f; i, i, be
families of functions of k variables taking (S x ... x §) into a Banach space (B, ||-||). Then,
for all m > k > 2, t > 0, there exist numerical constants C; depending on £ only so that,

1 1 1
P(]| > i XD, XD x>0
1<ig #io#.. . #ig<n
1 2 k
< CLP(Cy| 3 Frin XD, X2 X)) 2 1),

1<ig Aia#.. . #ig<n

The reverse bound holds if in addition, the following symmetry condition holds almost
surely

filig...ik (Xi17Xi27 ceey Xlk) = fi‘n’(l)i‘n’(Q)"'iﬁ(k) (Xiﬂ.(l) ) Xiﬂ.(gy (R3] X’L'.,r(k))a

for all permutations 7 of (1,..., k).
1. Introduction

In this paper we provide the multivariate extension of the tail probability decoupling
inequality for generalized U-statistics of order two and quadratic forms presented in de la
Pena and Montgomery-Smith (1993). This type of inequality permits the transfer of some
results for sums of independent random variables to the case of U-statistics. Our work
builds mainly on recent work of Kwapien and Woyczynski (1992) as well as on results for
U-statistics from Giné and Zinn (1992) and papers dealing with inequalities for multilinear
forms of symmetric and hypercontractive random variables in de la Pena, Montgomery-
Smith and Szulga (1992), and de la Pena (1992). It is to be remarked that the decoupling
inequalities for multilinear forms introduced in McConnell and Taqqu (1986) provided us
with our first exposure to this decoupling problem. For a more expanded list of references
on the subject see, for example, Kwapien and Woyczynski (1992).
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2. Main Result
Theorem 1. Let {X;} be a sequence of independent random variables in a measurable
space (S,.5), and let {Xi(])}, j =1,....,k be k independent copies of {X;}. Let f; i, i, be
families of functions of k& variables taking (S x ... x S) into a Banach space (B, ||-|[). Then,

for all m > k > 2, t > 0, there exist numerical constants Cj, C}y depending on k only so
that,

1 1 1
P() 3 Firan (XD, X0 XY 2 1)
1 2 k
< CLP(Cy| 3 Firin X X2 x> 0).

1<ig Aig#. . #ig<n

If in addition, the following symmetry condition holds almost surely
Jivig.in (Xiy, Xigy ooy Xy ) =

fiw(l)iW(Q) (k) (X’iwu) ) Xiw(z) AR Xiw(k))

for all permutations 7 of (1,..., k), then

1 2 k
P(]| > i XD, x@ x> 1)
1<ig #io#.. . #ig<n
~ ~ 1 1 1
<GPGH Y faa XD XD XD =),

1<igi#io#.. . F#ig<n

Note: In this paper we use the notation {i; # iy # ... # i} to denote that all of i1, ..., i
are different.
3. Preliminary Results
Throughout this paper we will be using two results found in earlier work. The first
one comes from de la Peia and Montgomery-Smith (1993). For completeness we reproduce
the proof here.
Lemma 1. Let X, Y be two i.i.d. random variables. Then

1) P(IXI > 1) < 3P(IX + Y] 2 2).

Proof: Let X,Y, Z be i.i.d. random variables. Then

P(IX][ =

t)

P|(X+Y)+(X+2)—- (Y +Z)|| >2t)

< P(|X 4+ Y| >2t/3) + P(||X + Z|| > 2t/3) + P(||Y + Z|| > 2t/3)
3P(||X +Y]|| > 2t/3).

The second result comes from Kwapien and Woyczynski (1992) and can also be found
in de la Pena and Montgomery-Smith (1993).
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Proposition 1. Let Y be any mean zero random variable with values in a Banach space
(B, || - |])- Then, for all aeB,

K
(2) P(lla + Y[ 2 flal)) = 7,

— (Elz'()])? / : : :
where kK = inf /. p/ B (V) (Here B’ denotes the family of linear functionals on B.)
Proof: Note first that if ¢ is a random variable for which F{ = 0, then P(§ > 0) >

5(5(‘2‘2)2. From this, we deduce that P(z/(Y) > 0) > lw The result then follows,

4 BE(X(Y))
because if z'eB’ is such that ||2'|| = 1 and 2’(a) = ||a||, then {||a + Y| > ||a||} contains
[#'(a+Y) > 2'(a)} = {=/(Y) > 0},
Lemma 2. Let x,a;,,a;,iy, .-, i i,..i, belong to a Banach space (B, || -||). Let {¢;} be a

sequence of symmetric Bernoulli random variables. Then,

k
P(lz+>, > ap e el >]l) >

r=11<i;#is#...%i,<n

for a universal constant 1 < ¢ < oo depending on k only.

Proof: Suppose that x,a;,,a;,iy, .- @i i,.. i, are in R, then since the €’s are hypercontrac-
tive, by equation (1.4) of Kwapien and Szulga (1991) and the easy argument of the proof
of Lemma 3 in de la Penia and Montgomery-Smith (1993), for some o > 0, we get

(E] Zle 21917&...7&@'471 @iy .. Ciy - Eiy ’4)%

= (B 021 Sy <<y bir. it | 1)’
<o *(E| Zl::1 D 1<in<..<in<n Vit €y i %)
= 0 MBI 0o Dici i Girin i i, )7,

where b;, ;. = ZWGST Qi (1o (1) and S, denotes the set of all permutations of {1,...,7}.

Next, observe that ||£]|4 < 072||¢||2 implies that ||£]|2 < 074|[€]]1. Take 2'eB’ so that
l|z’|| = 1 and 2/(z) = ||z||, then

[

k
Pl 42021 2ot <iitint.. in<n Giroin€in €| 2 [[2]])
k
> P(z'(z) + >, Zlgii;éz'Q;é,,,;ﬁiTgn (@i, .., )€iy €0, = 2 ()
k —
= P(Zrzl Zlgiﬁéiz;é...;éirgn m'(ailmir)eil...eir > 0) > (&% !

Note: Throughout this paper we will use c; and C}% to denote numerical constants that
depend on k only and may change from application to application.
4. Proof of the Upper Bound:
Our proof of this result is obtained by applying the argument used in the proof of the
upper bound in the bivariate case plus an inductive argument. Let {o;} be a sequence of
1

independent symmetric Bernoulli random variables, P(o; = 1) = 1 and P(o; = —1) = 1.

Consider random variables (ZZ-(l), ZZ-(Q)) such that (ZZ.(l), ZZ.(Q)) = (Xi(l),Xi@)) if o; =1 and
(ZZ.(I),ZZ-(Q)) = (X,L-@),XZ-(D) if o; = —1. Then (1 + 0;) and (1 — 0;) are either 0 or 2 and
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these random variables can be used to transform the problem from one involving X’s to
one involving Z’s. Let us first illustrate the argument in the case that k = 3.

23y iais (20, 20, 72 =

i1 ) Tig

{M 4+ 04) (L4 04,) (1 + 04y) firinis (X(l) xW X(Q))

11 ) 19

(14 04,1+ 03,) (1 — 03) firinis (XD, X X ()

1 ) 12

(14 03,)(1 = 03) (14 03) firinis (XD, X2 X2

11 ? 12

(3) (1= 03 (1 +05) (14 03y) firimia (X2, X, X2

11 ) 12 )

+(1+ 04, )(1 — 04, ) (1 — 04y) firinis (X(l) x® X(l))

11 ? 19

(1= 03 (1 + 05,) (1= 03y) firimia (X7, X, X1

1 ) 12 )

(1= 04,)(1 = 03) (1 + 03) firinis (X2, X2 X2

2 2 1
F(1 = 03) (1= 03,) (1= 03y) firinis (X7, X2 XY,

where the sign “4” is chosen if the superscript of X; agrees with that of Z;, and “—”
otherwise. Next, set T}, 3 = Z
1<y i iz <n

(1 1 2 1 1 1
{f111213< Z1),)(( ) X( )) —|—f111213(X( ) X( ) X( ))

19 11 ) 19 )

+fi1i2is(X(1) X(Q) X(Q)) +fi1i2i3(X(2) X(l) X(Q))

11 Y7 ) i1 2% Vig

Fininis X X XY 4 fe (X XD X )

11 ) 19 11 ) 12 )

2 2 2 2 2 1
i X XE XY 4 frnin X2, X2 x ).

i1 ) ig 0 217127

Letting G, = a(Xi(l),Xi@),i =1,...,n) we get

Tn,3 = 23 Z E(lezzzs(Zz(ll)vzz(gl)7Z(Q))|g2)
1<ii#ia#iz<n

More generally, for any 1 <[y, ...,lx < 2, one can obtain the expansion
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l1 l
2k fiy i (ZI, . Z)

11

(4) = Y (Axoy)..(t0s,) fia (XIY, L XT9),

1<j1,.- k<2
The appropriate extension of T}, 5 is
Tor= Y, ST faa (XY LX),
1<in#.. . #ipg<n 1<j1,...,j, <2

Again,

l1 l

From Lemma 1 we get,

1 1
PA Y faax P x D)z <
1<iy#in#.. . Aig<n
1 1 2 2
3P<3H Z {flllk(Xz(l)77Xz(k))+flllk(Xz(1)a7Xz(k))}H ZQt) =

1<iy#...#ip<n

SPGB Tns+ Y. Fua X X+ fi (XX D) — Tl > 2t) <

1<i1#...#i,<n '
{8PGI|Tll = 1)
w3p@ Y 3 Fireae X X 2 1))

I<i#..#ik<n1<j, .5, <2, not all j’s equal

< {3PQ[|Thkll = 1)

() + 2. ChPCrll Y fina (XYL XTI > 1))

1<j1,...,jx<2, not all j’s equal 1<i .. #i<n

(Recall that Cy, ¢, are numerical constants that depend on k only and may change from

application to application.)
Observe also that using (4) and the fact that the o’s are independent from the X's,
Lemma 2 with o = T, ;, gives for any fixed 1 <1y,...,{; < 2,

l l _
(6) PR Y funa (2, 2 2 Tkl 1G2) = o,

1<iy#...#ip<n

Integrating over {||T}, k|| > t} and using the fact that {(Xi(l),Xi(Q)) :1=1,...,n} has
the same joint distribution as {(Zi(l), Zi(Q)) :i=1,...,n} we obtain that

) PRA YT faa (X LX) 2 ).
1<iy#.. i <n



Iy l _
=P > faea@0 o 20N 2 0 2 G P( [Tkl > 1)
It is obvious that the upper bound decoupling inequality holds for the case of U-

statistics of order 1. Assume that it holds for U-statistics of orders 2,...,k — 1. Putting
(5) and (7) together with 1 <y,...,lx < 2, not all I’s equal we get,

1 1
P 1iy ottty Firoin (XD XD > #) < {3P(3]| Tl > 8)

+ > CePCll Y fia XYL X = 0}
1<j1,....je<2, not all j’s equal 1<i ... #ig<n

< 3 P Y fian (XY LX) > 1)
1<j1,....je<2, not all j’s equal 1< #..Fig<n

< ChP(CKl| s, 4 iy Firoin (X, XD > 1),
where again, the last line follows by the decoupling result for U-statistics of orders 2, ..., k—1
of the inductive hypothesis. Since the statement “not all j’s equal” means that there are
less than k j’s equal, the variables whose j’s are equal can be decoupled using (conditionally
on the other variables) the decoupling inequalities for U-statistics of order 2, ...,k — 1.
Next we give the proof of the lower bound.

5. Proof of the Lower Bound
In order to show the lower bound we require the following result.

Lemma 3. Let 1 <[ < k. Then there is a constant C}, such that

1 1 1
P()| 3 Firoin XD XD X)) > 1)
1<ig Aig#. . #ig<n

1<ig#ip#. . Fig<n 1<j1,...,Jk <l

Proof: Let {é,},7 =1,...,], be a sequence of random variables for which P(6, = 1) = 7

and P(6, =0)=1— %, and Zi:l 0, = 1. Set €, = 6, — % for r = 1,...,1. Then, it is easy
to see that there exists o; > 0 depending only upon [ such that for any real number x(
and any sequence of real constants {a;}

l l
(8) 2o+ Y arerlls < [lzo+ 07" arer]a.
r=1 r=1

One can also use the results of Section 6.9 of Kwapien and Woyczynski (1992) (Pg. 180,
181) to assert this since the €’s satisfy the conditions 1. through 3. stated there.
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Let {(di1,-.-,04),% = 1,...,n} be n independent copies of (d1,...,d;). As before, we
define

1

(9) Eij = (Sz‘j — 7

Since the vectors &; = (€1, ..., €;) are independent, by an argument given in Kwapien and
Szulga (1991), for ¢ = 1,...,n, for all constants x,a;; in R,

n l n l n l
(10)  |[lzo +Zzair6irH4 < [|zo +Ul_lzzair€¢rH2 < o7 |wo +Zzair€ir“27

i=1 r=1 i=1r=1 i=1r=1

and recentering, we obtain

n l n l
(11) ||930+Zzair5z’r||4 §0f1||$0+zzair5ir||2-

i=1r=1 i=1r=1

Next we use the sequence &;,7 = 1,...,n in defining the analogue of the Z’s used in
our proof of the upper bound.

For each i, let Z; = Xi(j) if 0;;j = 1. Then, {Z;, i = 1,...,n} has the same joint
distribution as {Xi(l), i=1,..,n} and

1§j17j27"'7jkgl

The fact that Ed; ;, = % for all i,., j, gives,

1

E(flllk<Z21’ﬂZZk)‘gl) = (j)k Z f“zk(XZ(fl)”XZ(Zk))’
1S]17,]k§l
where G; = a((Xi(l), ...,Xi(l)), i=1,..,n).
Let
Un = Zlgiﬁéig;&...;&ikgn filiz..-ik (Zi17 R Zik)
Z Z 110 ijkfllmlk( i1 ) [ 73 )

1<igF#in# . Fipe<n 1<j1,...,5k <1

Let D; = (di1,-...,04). Since the D’s are independent of the X’s, if we let
i ...ix (Diyy -, Dy, )

= Z 5i1j1---5ikjkfi1...ik(Xi(fl),' : 'in(,zk))

then, since

f’L1’Lk (Xi17 ceey X’Lk) = fi(,‘.(l))...i(w(m) (X’L'ﬂ.(l)J ceey Xiﬂ(k))?
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we have that,

Giq...ip (Di17 sy Dzk) = gi(ﬂ.(l))...i(ﬂ.(k)) (Diﬂ.(l) JREES) D’iﬂ-(k))'
Therefore, the two sided decoupling inequality in de la Pena (1992) can be applied and, for
every convex increasing function ®, every G;-measurable function 7', and k independent
copies DZ@, r =1,...,k of D; there exists numerical constants Ay, By so that

1 k
<E@IT+ Y gn.a@P, . DE)DIG)

1<ig #ig#.. . #ig<n

This result with (11) shows that conditionally on G

_.B
(12) U = Talla < 07 * 20 U = Tl
k
where
1k 5 . ‘
T,=EUG)=(3) > > fua XXX,

(See also the proofs of Lemma 2 and Lemma 6.5.1 of Kwapien and Woyczynski (1992)).
Thus we have that,

(13) P(||U]l = [|T]11G1) = ¢ -

This follows from the use of (12) and Proposition 1 with a = T,, and Y = U,, — T,,. We

also use the fact that for any random variable £ and positive constant ¢, |[£||ls < ¢]|€]]2

implies that [|¢||2 < ¢?||€]]1 (See also the proof of Lemma 2 for the approach to transfer

the problem from one on Banach space valued random variables to one on real valued).
Integrating (13) over the set {||T},|| > t} we get

1 1 1
P11 <ty it en Jinin (X, XD, XY 2 8)

:P(H Z f111k(Zl172127721k)H Zt)

> ¢, P(Cr| >, Y fia (X9 X0 X)) > ),

1<ii#io#. Fip<n 1<j1,...,jx <l

and Lemma 3 is proved.



The end of the proof of the lower bound follows by using induction and the iterative
procedure introduced to obtain the proof of the lower bound multivariate decoupling in-
equality in de la Pena (1992). We give a different expression of the same proof, motivated
by ideas from de la Pena, Montgomery-Smith and Szulga (1992). We will use Si to denote

the set of permutations of {1,..., k}.
The Mazur-Orlicz formula tells us that for any 1 < j1,..., jx < k that

Z (_1)k—61—...—6k5j1 . 5]k

0<51,...,0, <1

is 0 unless j1, ..., jx is a permutation of 1,.... k, in which case it is 1. Hence

(1 w(k
S o (X)L x ()

TESK
_ Z (_1)k—61—...—6k Z 8y e O firo (X(Jl)

0<61,...,0, <1 1<g1, 0k <k

By the symmetry properties on f,

k
Z fi1 (Xz(ll)""in(k))

1<ir#.. #ip<n
_ % Z Z (—1)k—81 = Z 8y 8s firi

T 1<ig#. #ip<n 0<61,...,0, <1 1<41,..,ju <k

Therefore,

k
Pr(l Y faa XD LX) > 1)

1<ii ... #ip<n

) X(jk)

1k

(X(Jl)

).

_ X(jk)

1k

D (Y Do GG (X X 2 k2"

0<4d1,...,6<1 1<in#. Fipg<n 1<j1,...,js <k

k
-2 (I;:) el 2 Do Fuea XX > k20,

I=1 1<iz#...Fip<n 1<j1,...,jk <l

and this combined with Lemma 3 is sufficient to show the result.
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