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Abstract. We examine a Bayesian approach to estimating the number of
classes in a population, in the situation that we are able to take many inde-
pendent samples from an infinite population.

Introduction. Suppose we capture 1000 birds from an effectively infinite popula-
tion, and observe 15 different species. Estimate how many species have not been
observed. While it is clear that one can only get a lower estimate (because there
may be a very large number of extremely rare species which we have essentially no
hope of observing), nevertheless if, say, 4 of the species appear only once, we would
assume that most likely that there are species not observed, because if 15 were the
exact number we would likely have not observed every one of them.

More generally, suppose that we have an observation O of n independent samples
from an infinite population. Each sample belongs to one of M classes C1, C2, . . . , CM ,
and the probability that a sample belongs to class Ci is pi, where 0 ≤ pi ≤ 1 and∑M

i=1 pi = 1. The goal of this paper is to present a Bayesian method to estimate
the class number, M . The difficulty is to estimate the number of classes that have
not been observed.

A survey of various approaches is given in [2]. In particular, we point out a
rather effective method due to A. Chao [1]. If mk is the number of classes observed
k times, then a lower estimator for the number of classes not observed is m2

1/2m2.
The Bayesian approach will be to treat M and p = (p1, . . . , pM ) as random

variables with prior distributions. After computing the posteriors, we will inte-
grate out p. This has already been explored, for example, in [3], where the final
distribution is obtained using Monte-Carlo techniques. In this paper we present
some prior distributions for which we are able to give explicit formulae for the final
distributions.

The purpose of this paper is not to advocate for the Bayesian approach, but
rather to identify that in this particular situation that the Bayesian approach seems
to give rather poor quality answers. We will present a computer generated simu-
lation in which our methods will significantly overestimate. In particular, the beta
prior distributions will be shown to give significantly bland answers, because the
final formulae do not depend upon the numbers mk, but only upon m =

∑n
k=1 mk,

the total number of classes observed, and n =
∑n

k=1 kmk, the sample size.

The posterior. Let n1, n2, . . . , nm denote the number of samples from each ob-
served class, that is, a sequence in which each number k appears exactly mk times.
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Now we do not know which class is which, and so

Pr(O|(M,p)) =
∑

σ∈Bm,M

m∏
i=1

pni

σ(i),

where Bm,M denotes the set of one to one mappings from {1, 2, . . . ,m} to {1, 2, . . . ,M}.
(We mention that this formula assumes that we are also told the order in which
the samples are picked. If we do not know the order in which they are picked,
and we are simply given the numbers n1, n2, . . . , nm, then there is an extra factor
n!/n1! · · ·nm!m1! · · ·mn!. However this factor is independent of M and so it will
disappear in the final normalization that takes place in Bayes’ Theorem.)

The prior for p given M is a distribution µM on the simplex

∆M−1 =

{
p = (p1, . . . , pM ) : pi ≥ 0,

M∑
i=1

pi = 1

}
,

which, since we do not know a priori which class is which, must be invariant under
rearrangements of p1, . . . , pM . Thus

Pr(O|M) =
∫

∆M−1

Pr(O|(M,p) dµM (p) =
M !

(M −m)!

∫
∆M−1

m∏
i=1

pni
i dµM (p).

Prior distributions from populations. The prior distributions of p that we will
consider will be derived from the size of the population of each class, Xi, which
are very large (that is, effectively infinite) random variables, but independent and
identically distributed. We will assume that each Xi has a continuous probability
distribution λφ(λx) dx, where λ > 0 is very small. In the appendix we will show
that

Pr(O|M) =
M !

(M −m)!(n− 1)!

∫ ∞

s=0

s−M−1h0(s)M−mh1(s)m1h2(s)m2 · · ·hn(s)mn ds,

where

hk(s) =
∫ ∞

0

xke−xφ(x/s) dx.

Beta prior distributions. This distribution arises when the population size of
each class is given by the Gamma distribution, namely the distribution is φ(x) =
xae−x/Γ(a + 1), where a > −1. Then dµM (p) is a beta distribution, that is, it is
proportional to (p1 · · · pM )a times Lebesgue measure on ∆M−1. The case a = 0 is
the uniform distribution on ∆M−1. A direct calculation shows∫

∆M−1

M∏
i=1

pni
i dµM (p) =

Γ(M + Ma + 1)
Γ(M + Ma + n + 1)

m∏
i=1

Γ(ni + a + 1)
Γ(a + 1)

.

After applying Bayes’ Theorem, and remembering the normalization that takes
place, we find that

Pr(M |O) ∝ M !Γ(M + Ma + 1)
(M −m)!Γ(M + n + Ma + 1)

Pr(M),

where the constant of proportionality is so that the probabilities on the left hand
side add up to 1. We notice that the answer does not depend upon the values of
n1, n2, . . . , nm, but only upon the sample size n, and the number of classes observed
m.
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Uniform distribution on the sphere. Here we suppose that the population sizes
of each class have a semi-Gaussian distribution, that is φ(x) =

√
2/π e−x2/2. This

gives rise to a distribution which is formed by projecting the normalized uniform
distribution on the positive sphere

S+
M−1 =

{
q = (q1, q2, . . . , qM ) : qi ≥ 0,

M∑
i=1

q2
i = 1

}
onto ∆M−1 via the map q 7→ q/(q1 + q2 + · · ·+ qM ). In this case we obtain

hk(s) =

√
2
π

∫ ∞

0

xke−x exp(−x2/2s2) dx.

Although hk(s) can be computed explicitly as (−1)ksk+1 times the kth derivative
of exp(s2/2) erfc(s/

√
2), the resulting formula is numerically unstable for large s.

Instead it is rather easily computed by a standard numerical integration package.

Uniform distribution on the rectangle. This next possibility is if the popula-
tion of each class is uniformly distributed. In this case hk(s) is a lower incomplete
Gamma function, which can easily be numerically computed.

A numerical simulation. A computer simulated a sample of n = 500 taken from
a population of 100 classes, of which 50 of the classes occurred with a probability
of 0.05, and the other 50 classes occurred with a probability of 0.15. The data
obtained had m1 = 12, m2 = 15, m3 = 12, m4 = 8, m5 = 6, m6 = 15, m7 = 8,
m8 = 4, m9 = 4, m10 = 8, m11 = 2, m14 = 1, m15 = 2, and all other mk = 0.
Thus the number of observed classes is m = 97. The Chao estimate gives 3.2 for
the number of unobserved classes, which is very close to the correct answer.

Using the improper prior distribution where Pr(M) is constant, then the beta
with a = 0, uniform spherical, and uniform rectangular priors for p respectively
give a final probability of M ≤ 100 equal to 3.46× 10−6, 0.00028, and 0.0048, and
a mid-90th percentile range for M of 121–131, 106–121, and 103–115. It can be
seen that the uniform rectangular prior seems to work the best, but all of them
significantly overestimate the class number.

Appendix: derivation of prior distribution from populations. We have
that ∫

∆M−1

M∏
i=1

pni
i dµM (p) =

∫
RM

+

xn1
1 xn2

2 · · ·xnm
m

(x1 + · · ·+ xM )n
λMφ(λx1) · · ·φ(λxM ) dx.

Since ∫ ∞

s=0

sn−1e−sy ds =
(n− 1)!

yn
,

the right hand side may be seen to equal

λM+n

(n− 1)!

∫ ∞

s=0

sn−1

∫
RM

+

xn1
1 xn2

2 · · ·xnm
m e−λ(x1+···+xM )sφ(λx1) · · ·φ(λxM ) dx ds,

which after making the substitution xi 7→ xi/λs can be written as

1
(n− 1)!

∫ ∞

s=0

s−M−1hn1(s) · · ·hnm(s)h0(s)M−m ds.
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