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Abstract: Numerical simulations of fiber orientation in
short-fiber composites have relied on the Folgar and
Tucker (1984) model for diffusion for over twenty years.
Unfortunately, it has recently been shown that this fiber
collision model tends to over-predict the rate of align-
ment; exposing the need for a new fundamental approach
to more accurately capture fiber interactions within the
melt flow. Here we present our initial work in the devel-
opment of an objective directional diffusion model and a
variable lambda model for fiber collisions where we mod-
ify Jeffery’s model (1922) to incorporate local direction-
ally dependent effects assumed proportional to the prob-
ability of fiber-fiber collisions. We show that our direc-
tional diffusion model performs well in extensional flows,
whereas its usefulness appears limited in shearing flows.
Conversely, preliminary results from the variable lambda
model in both elongational and shearing flows are quite
promising and will be the focus of future investigations.

1. Introduction: Among published short fiber orienta-
tion distribution simulation approaches, few enjoy the
widespread acceptance of the Folgar and Tucker model
[1] which forms the basis for most industrial fiber ori-
entation simulations (see, for example, [2–5] for appli-
cations). Recent experiments (see e.g. [6–14]), how-
ever, have exposed previously unknown limitations of the
Folgar-Tucker model, raising questions on the appropri-
ate form for representing diffusion in fiber orientation
simulations [7,10,11,14–17].

Most fiber collision models assume fiber interactions
are due to volume averaged effects similar to the theory
of rotary Brownian motion [18]. In traditional Brown-
ian motion, particles not subjected to an outside force
will return to an isotropic orientation, whereas fibers in
a polymer matrix will not reorient unless subjected to a
fluid deformation. In the present study we accept Bird’s
model [18] for diffusion whereby the equation of mo-

tion of a fiber orientation probability distributionψ(p)
is given as

Dψ

Dt
= ∇ ·

(
−ṗhψ +∇ (Drψ)

)
(1)

wherep is the unit vector along a fiber axis,Dr is the
rotary diffusivity, and the symbol∇ denotes the gradient
projected onto the tangent space of the sphereS, that is,
∇ = (I− pp) · ∂

∂p . Γ is the rate of deformation tensor

such thatΓij = ∂vi

∂xj
+ ∂vj

∂xi
wherev is the velocity vector

of the surrounding fluid. Observe that the time derivative
is taken as the material derivativeDDt to recognize that
orientation may be a function of spatial location and will
convect with the bulk motion of the fluid.̇ph is the time
derivative of the hydraulic component of rotational mo-
tion of the ellipsoid which is often assumed to be well
represented by Jeffery’s [19] equation expressed as,

ṗh =
Dp
Dt

= −1
2
Ω · p + λ

1
2

(Γ · p− Γ : ppp) (2)

whereΩ is the vorticity tensor,Ωij = ∂vj

∂xi
− ∂vi

∂xj
.

Folgar and Tucker [1] proposed a diffusivity model
based on the rate of deformation tensor and an empiri-

cal parameterCI asDr = γCI , whereγ =
√

1
2Γ : Γ.

Their model neglects the directional dependance of the
collisions notwithstanding the suggestion by Folgar and
Tucker that “...while it is possible, and even likely, that
these orientation changes have a directional bias, or are
different in nearly random and nearly aligned suspen-
sions, we have chosen to ignore these features” [1].

Kamel and Mutel [20] proposed a diffusivity model
that is a function of volume fraction, but for large volume
fractions of fibers is independent of shear rate, violating
the physical system being modeled. Koch [15] presents a
model for diffusion resulting from hydrodynamic fiber-
fiber interactions, but provides no experimental results
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nor a derivation to validate the model and claims valid-
ity only for low suspension concentrations in shearing
flows. Phan-Thienet al. [7] assume rotary diffusion is
an anisotropic second-order tensor that follows a “white
noise” random force behavior obtained from experimen-
tal samples for the steady state solution.

The Reduced Strain Closure (RSC) model of Wang
et al. [11] shows great promise as an objective diffusion
model and provides a scaling parameterκ for the equa-
tion of motion that subtracts an objective diffusion term
from Equation (1). The change in orientation is scaled
via the eigenvalues and eigenvectors of the second-order
moment tensor of the orientation distribution. The ARD
model of Phelps and Tucker [14] is a more generalized
form of the Koch [15] model and expands the rotary dif-
fusion function in terms of the invariants of the second-
order moment tensor of the distribution and the rate of
deformation tensor. Both the RSC and the ARD models,
although a significant step forward, do not lend them-
selves to a general derivation scheme and it is thus dif-
ficult to quantify their effectiveness for similar systems
that share similarities with a short fiber system (i.e. ag-
glomerating nanotube suspensions [10, 21, 22]). There
still remains a considerable amount of work to be accom-
plished if a general form for the equation of motion of a
semi-concentrated or a concentrated suspension of ellip-
soidal inclusions is to be realized.

2. Spherical Harmonic Expansion: The solution of
Equation (1) is not a trivial undertaking. Direct solutions
using the control volume approach of Bay and Tucker
[23] is particularly popular in determining high accuracy
solutions, but solutions are computationally prohibitive
(see e.g. [5]) for even simple flows. For example, so-
lutions of Equation (1) with a control volume approach
for Folgar and Tucker diffusion require several hours to
days to solve for even the simplest of academic flows (i.e.
pure shear and pure elongation). This is particularly rele-
vant considering that recent diffusion models and those
presented in this work require a greater computational
demand due to the relative complexity of their assumed
form for the rotary diffusion. For example, solutions us-
ing the Koch model [15] with control volumes require
more than an order of magnitude increase in computa-
tional effort relative to the Folgar and Tucker model.

To alleviate this computational burden, Advani and
Tucker introduced orientation tensors which are defined
by taking moments of the fiber orientation probability
distribution as

Aij··· =
∮

S
pipj · · ·ψ (p) dS (3)

whereS is the surface of the unit sphere. Orientation ten-
sors capture the stochastic nature of the fiber orientation
distribution in a compact form via the dyadic products
of the unit vectorp and the fiber distribution functionψ.

Computations that evaluate orientation tensors are on the
order of seconds for simple flows. Unfortunately, their
use introduces the issue of a closure whereby the resulting
equation of motion for a given orientation tensor requires
knowledge of a higher-order orientation tensor. For ex-
ample with the second-order orientation tensor equation
of motion the Folgar and Tucker diffusion model requires
knowledge of the fourth-order orientation tensor. Sim-
ilarly, the second-order tensor equation of motion with
the Koch diffusion mode requires knowledge of both the
fourth- and the sixth-order orientation tensor.

The method of spherical harmonic expansions devel-
oped by the authors (see e.g. Montgomery-Smithet al.
[24, 25]) has been developed to solve partial differential
equations on a sphere. In particular, solutions of Equa-
tion (1) have been solved in an efficient manner. The
order of the expansion can be selected based on the de-
sired order of accuracy and is only limited by the desired
level of computational effort. The method is equivalent
to using the higher-order moment tensors with a linear
closure (see e.g. Hand [26]), and solutions have been
performed by the authors for expansions up to order 400
with computational efforts equivalent to solutions using
the second-order orientation tensors with a fourth-order
orthotropic closure (see e.g. [4, 27–29] for several of the
orthotropic closures) with accuracy approaching machine
precision.

The spherical harmonic approach can be summed up
by recognizing that a distribution defined on the unit
sphere can be reconstructed as a system of ordinary dif-
ferential equations as (see e.g. [25])

∂

∂t
ψ̂m

l (p) =
∞∑

l′=0

l′∑

m′=−l′
cm,m′

l,l′ ψ̂m′
l′ (p) (4)

where each of the coefficients of expansion for the distri-
bution function can be expressed as

ψ̂m′
l′ (p) =

∫

S
ψ (p) Ȳ m

l (p) dS (5)

whereȲ m
l is the set of complex conjugates of spherical

harmonics as described in [25]. The complex coefficients
cm,m′

l,l′ can be computed explicitly, and their resulting sys-
tem of equations is extremely sparse thus lending itself to
efficient and rapid computations. The choice of expan-
sion is arbitrarily selected sufficiently large enough such
that the error in selecting the linear closing of the expan-
sion is of a similar order of magnitude as machine preci-
sion, thus bypassing the closure issue that plagues orien-
tation tensor equations of motion. In addition, the form of
Equation (4) is sufficiently general such that the equation
of motion for each of the previously mentioned diffusion
models have been solved (see e.g. Montgomery-Smithet
al. [25]) using the spherical harmonic approach for many
of the classical flows (i.e. shearing, elongational, etc.)
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in an efficient manner which could have previously only
been solved with the orientation tensor approach with a
closure approximation.

3. Directional Diffusion: As part of this research, we
investigate an anisotropic diffusion model that incorpo-
rates two effects, (1) local directionally dependant effects
proportional to the probability of collision between two
fibers represented by the unit vectorsp and ρ shown
in Figure 1, and (2) large scale volume averaged diffu-
sion behavior analogous to shear rate dependant Brown-
ian motion. To retain coordinate frame invariance when
looking at the relative motion between two fibersρ and
p, we assume both fibers experience the same vorticity,
we consider Jeffery’s model for the motion of the fiberρ
without rigid body effects expressed as

˙̃ρ
h

= ρ̇h +
1
2
Ω · ρ =

1
2
λ (Γ · ρ− Γ:ρρρ) (6)

During an infinitesimal period of time, the fiberρ rotates

through an angle relative top proportional to˙̃ρ
h
, and the

area through whichρ rotates is proportional to the magni-

tude ofρ× ˙̃ρ
h
, with a direction normal to the plane con-

tainingρ. The probability of a hit betweenp andρ will
be zero whenp is parallel to the plane containingρ and
˙̃ρ
h
, and greatest whenp is parallel toρ× ˙̃ρ

h
. Therefore,

we assume the probability of a collisionPρ hit p pro-
portional to the scalar triple product ofp with the vector

ρ× ˙̃ρ
h

as

Pρ hit p = C1

∣∣∣p ·
(
ρ× ˙̃ρ

h
)∣∣∣

Pp hit ρ = C1

∣∣∣ρ ·
(
p× ˙̃p

h
)∣∣∣ (7)

where the second expression in Equation (7) expresses
the probability of fiberp rotating into fiberρ, and the
constantC1 is allowed to be a function of fiber aspect ra-
tio and volume fraction. The fibersρ are sampled from
ψ (ρ), ergo the expectation of a collision with a given
fiber p may be represented by the integral overρ ∈ S. In
addition to local collisions, we incorporate volume aver-
aged effects assumed to satisfy the Brownian-type behav-
ior observed by Folgar and Tucker [1]. Thus the combi-
nation of local collision effects and the volume averaged
effects yields

Dr(p) = C1

∮

ρ∈S

ψ (ρ)
(∣∣∣ρ·

(
p× ˙̃ρ

h
)∣∣∣+

∣∣∣p·
(
ρ× ˙̃p

h
)∣∣∣

)
dS

+ C2

∮

ρ∈S

γψ(ρ)dS (8)

It is worthwhile to note that the Folgar-Tucker model is
obtained by settingC1 = 0 andC2 = CI . Note that
in Equation (8) the rotary diffusivity remains a function

of the velocity gradients through the rate of deformation
tensorΓ and the fiber orientation through the unit vector
p, which is independent of the integration forρ ∈ S.

x
1

x
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x
2

ρ_
 ~

 
.
  h
ρ_

p_

Figure 1: Coordinate system depicting the path through
which the fiberρ passes intop.

It is important to note that like our previously pub-
lished solutions of Equation (1) (see e.g. Jack [30] and
Jacket al. [17]) with the directional diffusion model of
Equation (8), this new approach also requires that each of
the absolute value terms in Equation (8) be replaced by
the expression squared, i.e.|x| ' x2. This was included
in the earlier work to cast the equation of motion forψ in
terms of its moments (see e.g. Jack [30]), thus avoiding
the prohibitive computational expense when solving for
ψ via the usual control volume approach (estimated to be
nearly∼ 2.4×106 seconds for simple shear flow). Unfor-
tunately, the prior formulation that directly computed the
second-order orientation tensor required the tenth-order
orientation tensor. Several higher-order tensor closures
approximations were introduced which significantly in-
creased the error and decreased the confidence in the re-
sults. The new approach employed here solves Equation
(1) with directional diffusion using spherical harmonic
expansions. As a result, these solutions can now be ob-
tained without higher-order closures, thus allowing a fair
and objective criticism of the directional diffusion model.

Two flows are studied, both beginning from an ini-
tially isotropic orientation state, i.e.ψ = 1

4π . Recall
that an effective diffusion model should have the ten-
dency to slow down the rate of alignment away from an
isotropic state without drastically altering the final orien-
tation state. For graphical purposes, all results are pre-
sented in the orientation tensor format where the rate of
alignment is easily observed. Notice in Figure 2 the Fol-
gar and Tucker solution withCI = 10−3, designated by
the solid line, begins from an initial isotropic orientation
state (i.e.A11 = A22 = A33 = 1/3), but as time pro-
gresses, theA11 parameter goes to 1 and theA22 = A33

parameters go to zero which would be indicative of a per-
fectly aligned orientation state with the alignment occur-
ring in thex1 direction. For each of the directional dif-
fusion simulations it was found that there was little to no
change in the final orientation state between the Folgar
and Tucker solutions and the directional diffusion solu-
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tions if the coefficientC2 (corresponding to the volume
averaged diffusion) was set to10−3 regardless ofC1. No-
tice that as the coefficientC1 increases (thus implying
that the contribution from local collision effects is in-
creasing) the rate of alignment appears to diminish and
the steady state solution occurs at a much later moment
in time.
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Figure 2: Transient solution forAij from uniaxial elon-
gation, directional diffusion model,C2 = 10−3.

The second flow studied is a pure shearing flow with
the bulk fluid motion being constrained to thex1 direc-
tion with shearing occurring solely in thex3 direction
(i.e. v1 = Gx3, v2 = v3 = 0). Unlike uniaxial elon-
gation flow, the coefficientC2 is strongly dependant on
the choice ofC1. The range for viableC1 values is
C1 ∈

(
0, 5× 10−2

)
is greatly diminished without dras-

tically altering the final orientation state as observed in
Figure 3. Notice the directional diffusion model has only
nominal effects on orientation states near isotropic.
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Figure 3: Transient solution forAij from Simple Shear-
ing flow, directional diffusion model.

It is worthwhile to take a closer look at the directional

diffusion model characteristics nearing the isotropic ori-
entation state. It is desired that an appropriate diffusion
model would slow down the rate of alignment, but in par-
ticular it is desired to diminish the rate of alignment for
an orientation state near isotropic. A close-up of the uni-
axial elongation simulation from Figure 2 is presented in
Figure 4. Observe how theA11 component of the orien-
tation tensor initially increases quickly from the isotropic
orientation state, and then the rate of orientation dimin-
ishes once the orientation state achieves some level of
alignment. This characteristic is quite undesirable and
further work is required to construct a viable rotary diffu-
sion form with the desired characteristics.
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Figure 4: Transient solution forAij from uniaxial elon-
gation, directional diffusion model,C2 = 10−3 for Gt <
1.

4. Variable Lambda Model: An alternative approach
to investigating collision models in the form of Equation

(1) is to focus on theλ term within ˙̃p
h

which represents
the ‘equivalent aspect ratio’ [19]. Jeffery’s derivation as-
sumes that the fiber is surrounded by a fluid that obeys
the Newtonian Stokes equation [19]. He assumes that the
fiber is by itself in an infinite fluid. This is a reasonable
approximation when fraction of fibers within the fluid is
very close to zero. But as the volume fraction becomes
large, the fibers interact with each other via Stokesian ef-
fects upon one another. Each fiber moving within the
fluid affects the fluid that is pushing it, and the effect upon
the fluid is transferred via Stokes’ equation to effect the
fluid surrounding other fibers. An exhaustive treatment
would mean having to solve the complete Stokes equa-
tion in the presence of many fibers, and attempts by the
authors and their students to do this using finite element
methods have so far proved computationally prohibitive.

We assume the motion of the fiber itself alters the mo-
tion of the surrounding fluid. This is described by observ-
ing the two ends of the fiber of lengthε, that are separated
by the vectorεp. The fluid attempts to pull each end
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slightly differently, such that the difference between the
velocity of each respective end isv = 1

2ε(−Ω ·p+Γ ·p).
If the two ends move freely, then the fluid motion would
be independent of the existence of the fiber. But the two
ends are constrained to stay the same distance from each
other by the rigid rod assumption. Thus one needs to sub-
tract the projection ofv onto p from this relative veloc-
ity. This projection computes asv · pp = 1

2εΓ : ppp.
This exerts a counter reaction upon the fluid, whose size
is proportional to1

2εΓ : pp. In the case that the fiber is
oriented in a directionp such thatΓ : pp = 0, the fiber
has no effect on the fluid that is pushing it around. Aver-
age this quantity, the following expression can be readily
obtained

s := γ−1

∫

S
ψΓ : ppdS = γ−1A : Γ, (9)

whereA is the second-order orientation tensor defined in
Equation (3) and the quantityγ−1 is present to makes
dimensionless.

Thus we propose a model where, ifs = 0, the pure
Jeffery’s model applies withλ = 1 andDr = 0. Al-
ternatively, if s 6= 0, then we propose that interaction
provides two effects. First, the Stokesian lubrication be-
tween the fibers will cause them to stick together. Then
the calculation of Jeffery’s parameterλ should consider
the aggregate of the fibers as a single, albeit flexible ob-
ject, which would be a single object whose aspect ratio
is significantly less than infinity, that is, withλ quite a
bit less than one. Second, the fibers will push each other
via Stokesian interactions, thus suggesting the use of a
non-zero diffusion term.

The ‘variable lambda’ (Vλ) model sets theλ andDr

parameters in Equation (1) as

λ = f(s)
Dr = γg(s) (10)

As a preliminary try, we propose the functionsf(s) and
g(s) defined as

f(s) = max{1− κ−1|s|, κ}
g(s) = µ min{κ, |s|} (11)

Note that

|s| ≤
√

2 (12)

from the Cauchy-Schwartz inequality which yields

|A : Γ| ≤ (A : A)1/2(Γ : Γ)1/2 ≤
√

2γ(A : A)1/2 (13)

where(A : A)1/2 is the Frobenius norm ofA, which is
bounded by the sum of its singular values. SinceA is
positive semi-definite, the singular values are the same as
the eigenvalues, and hence the sum of the singular values
is equal to the trace ofA, which is one.

Other possibilities are to replace the quantitys by

γ−1

∫

S
ψ|Γ :pp|dS or γ−1

(∫

S
ψ|Γ :pp|2dS

)1/2

(14)

The former quantity is very difficult to work with in the
framework of spherical harmonics. The latter quantity
can be easily computed using the fourth order moment
tensor. However the authors found that using it did not
create reasonable numerical results.

As with the directional diffusion two flows are stud-
ied, a pure shear flow and an elongational flow, both
beginning at an initially isotropic orientation state, i.e.
ψ = 1

4π . Results are compared with the Folgar-Tucker
model for an interaction coefficient ofCI = 10−3. The
results for the pure elongational flow are shown in Fig-
ure (5) for values ofµ = 10−3 and κ = 1, 1

2 , 1
4 , 1

10 .
Observe that the variable lambda model does an excel-
lent job of elongating the rate of alignment. The Folgar-
Tucker model attains an alignment state nearing steady
state beforeGt = 25, but depending on the choice of the
parameterκ the same steady state solution is not attained
until a much later point in time. It is also worthwhile that
the steady state solution between the Vλ model and the
Folgar-Tucker model are graphically indistinguishable.
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Figure 5: Transient solution forAij from uniaxial elon-
gation, variable lambda model.

In the pure shearing flow, the variable lambda model
performs quite well as observed in Figure 6. The rate
of alignment is considerably reduced as the parameterκ
is reduced as compared to the Folgar-Tucker results for
CI = 10−3. It is worthwhile to mention that theA11 and
the A22 components between the two diffusion models
are the same at steady state, which in the case ofκ = 1

10
is observed numerically forGt > 5, 000.

It is also worthwhile to observe that theA13 compo-
nent from the variable lambda model decays at a much
quicker rate than in the Folgar-Tucker model. Although
both models experience the same steady state, this may
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Figure 6: Transient solution forAij from Simple Shear-
ing flow, variable lambda model.

not be a desirable characteristic when forming predic-
tions for the viscosity (see e.g. [11,31,32])

τ = 2ηΓ + 2ηNpA : Γ (15)

where the extra stressτ from the Navier-Stokes equa-
tions is a function of the matrix viscosityη, the dimen-
sionless parameterNp that relates to the relative impor-
tance of the fiber effects, andA is the fourth-order ori-
entation tensor. A component of particular difficulty to
predict in an industrial setting is theτ13 term (see e.g.
Wanget al. [11]), which is related to theA13 component
of the second-order orientation tensor. It will be the focus
of future work to quantify the relevance of this effect in
coupled industrial flows.

5. Conclusions: Numerical representations for short-
fiber kinematic motion has relied on the Folgar and
Tucker [1] model of diffusion for over twenty years, but
recent research has demonstrated the propensity of this
model to over-predict the rate of alignment. We presented
two models to represent fiber orientation kinematics, with
the preferred model being the variable lambda (Vλ) con-
struction. We believe that the Vλ model, or a related
modification, has the potential to provide the necessary
corrections to the Folgar-Tucker-Jeffery’s equation that
will represent the real data more accurately. As exper-
imental evidence becomes available, it may be possible
to find appropriate adjustments to the various parameters
such that the constitutive model results correspond with
experimental observations.
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