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ABSTRACT

This paper studies the rheological properties of a
semi-dilute fiber suspension for short fiber reinforced composite
materials processing. For industrial applications, the volume
fraction of short fibers could be large for semi-dilute
and concentrated fiber suspensions. Therefore, fiber-fiber
interactions consisting of hydrodynamic interactions and direct
mechanical contacts could affect fiber orientations and thus
the rate of fiber alignment in the manufacturing processing.
In this paper, we study the semi-dilute fiber suspensions, i.e.
the gap between fibers becomes closer, and hydrodynamic
interactions becomes stronger, but the physical/mechanical
contacts are still rare. We develop a three-dimensional finite
element approach for simulating the motions of multiple fibers
in low-Reynolds-number flows typical of polymer melt flow. We
extend our earlier single fiber model to consider hydrodynamic
interactions between fibers. This approach computes the
hydrodynamic forces and torques on fibers by solving governing
equations of motion in fluid. The hydrodynamic forces and
torques result from two scenarios: gross fluid motion and
hydrodynamic interactions from other fibers. Our approach
seeks fibers’ velocities that zero the hydrodynamic torques and
forces acting on the fibers by the surrounding fluid. Fiber
motions are then computed using a Runge-Kutta approach to

update fiber positions and orientations as a function of time.
This method is quite general and allows for solving multiple
fiber suspensions in complex fluids. Examples with fibers having
various starting positions and orientations are considered and
compared with Jeffery’s single fiber solution (1922). Meanwhile,
we study the effect of the presence of a bounded wall on fiber
motions, which is ignored in Jeffery’s original work. The possible
reasons why fiber motions observed in experiments align slower
than those predicted by Jeffery’s theory are discussed in this
paper.

INTRODUCTION
Fiber reinforced polymer composite materials, well-known

for high strength-to-weight ratio, are widely used in various
industries such as aerospace and automotive fields. The
mechanical, electrical and thermal properties of short fiber
reinforced composite materials could be largely improved by
adding up to 50% carbon or glass micro-size fibers into the
polymer matrix. Therefore, the physical/rheological properties
of fiber reinforced composite systems are tremendously
dependent on fiber orientations within the polymer matrix which
is determined during the manufacturing process. The orientation
state of fibers is often computed based on the model first
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proposed by Jeffery [1], who studied a single ellipsoidal fiber
moving in a Newtonian, incompressible, homogeneous flow.
While Jeffery’s model has received wide acceptance in the mold
filling community, experiments have shown that fiber alignment
occurs more slowly than that predicted by Jeffery-based models
( [2], [3]), which may result from such limiting assumption
of having no fiber-fiber interactions in Jeffery’s original work.
Likewise, Stover et al. [4] experimentally measured fiber
motions in semi-dilute suspensions, and found that fiber
orientations are different from those in dilute suspensions.
Additionally, the presence of a bounded wall could also change
the rheological behavior of polymer matrix. Therefore, this
paper studies the semi-dilute fiber suspensions and the effect of
a bounded wall on fiber orientations. The followings as related
to fiber orientations in composite molding processes are studied:
• A methodology is proposed to numerically solve

multiple fiber motions in semi-dilute suspensions. This approach
combines a finite element method, a Newton-Raphson iteration
method and a Runge-Kutta method.
• Hydrodynamic interactions between fibers are modeled.

With the presence of multiple fibers, the motion of one fiber
affects its surrounding fluid which influences the dynamics of
other fibers, and vice versa.
• Fiber orientations in a bounded shear flow are studied.

The changes of fiber motions and time periods of rotation with
the presence of a bounded wall are observed in our simulation.

The remainder of this paper is organized as follows:
Section 1 introduces Jeffery’s theory and related background
information. Section 2 elucidates the methodology, including the
finite element method, the Newton-Raphson iteration approach
and the Runge-Kutta method. Section 3 presents the effect of a
bounded wall on fiber motions. Section 4 gives some examples
to validate the proposed methodology. Conclusions and future
work are presented in section 5.
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FIGURE 1. Definition of a single ellipsoidal fiber orientation

1 BACKGROUND AND LITERATURE REVIEW
Jeffery [1] first derived the equations of motion for the

dynamics of a single ellipsoidal fiber suspended in a simple shear
flow. In Jeffery’s theory, fiber orientations are defined by three
angles (φ ,θ ,ψ) in terms of the global coordinate system xyz, as
shown in Fig.1. The angles φ and θ are used to define the unit
direction of the primary axis, often defined as P, and ψ represents
the rotation along P. Jeffery applied the zero-torque condition on
fiber and derived the differential equations, with the solutions of
φ ,θ ,ψ shown as follows.

φ(t) = tan−1
(

re tan
γ̇ t

re +1/re

)
(1)

θ(t) = tan−1 C re√
r2

e cos2 φ + sin2
φ

(2)

ψ(t) =
∫ t

0

(
γ̇

2
− φ̇

)
cosθdt (3)

where γ̇ is the shear rate of the simple shear flow, re is the
ratio of long-axis to short axis of the ellipsoid, often referred
to as geometric aspect ratio. For other shapes of fibers, such
as cylindrical fibers, the equivalent aspect ratio (r∗e ) should be
used to quantify fiber motions ( [5]), and those of cylinders
and bead-chain fibers were produced by Zhang, et al. [6]. The
constant C is determined by the initial fiber orientation (φ0,θ0)

and can be calculated as C = tanθ0

√
cos2 φ0 + sin2

φ0/r2
e .

Jeffery’s theory was later extended to a single fiber
suspension in other homogeneous flows ( [7], [8]). Two
important simplifications are made in Jeffery’s theory: 1)
Fiber-fiber interactions are totally ignored. However, in the
composite molding process, the volume fraction of fibers may
be high; 2) Fiber exists in an unbounded fluid domain, i.e., the
ratio of fiber dimension versus the size of fluid domain goes to
zero. However, in the manufacturing process, the outside wall
(cavity) exists, which would change the rheological behavior of
the polymer matrix. Therefore, the existence of other fibers or a
bounded wall could affect fiber orientations, which has attracted
many attentions in the rheological academic community.

In terms of fiber-fiber interactions, there are basically three
approaches:

1) Continuum mechanics: Batchelor [9] and Dinh [10]
modified the stress constitutive equation to take into account
the effect of fiber-fiber interactions on the total stress, and thus
the fiber motions. But no constitutive equation is available in a
closed form.

2) Statistical mechanics: From the statistical perspective,
the orientation distribution function was proposed to describe
the probability of fiber orientations pointing in certain
direction P, and a diffusion term is added to account for
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FIGURE 2. Finite element model of multiple fiber suspensions with specified boundary conditions

fiber-fiber interactions [11]. The orientation averaging using
diffusion-added orientation distribution function yields the
orientation tensor approach [7]. Multiple closure approximations
are proposed to address the closure issue of orientation tensor
approach [12].

3) Physical modeling: The inter-fiber hydrodynamic
interactions are approximated and simulated using different
methods. Mackaplow [13] and Rahnama [14] used slender-body
theory to describe the long-range hydrodynamic interactions.
Yamane [15] considered the short-range interactions between
rod-like fibers by using lubrication approximation. Fan
[16] applied slender body theory to approximate long-range
hydrodynamic interactions and used lubrication approximation
to calculate short-range interactions between fibers. Claeys [17]
treated the hydrodynamic interactions from multiple other fibers
as a single force and toque on the fiber.

There are not many studies on fiber motions in a bounded
flow. Junk [8] theoretically analyzed the effect of a bounded wall
around the fiber, and pointed out that Jeffery’s result represents
the leading order solution of a singularly perturbed flow problem.
Stover [18] experimentally studied fiber motions near a bounded
wall, and found that particles aligned with the flow direction and
less than a particle half-length from a wall remain indefinitely.
Jayageeth [19] simulated the short fiber suspension in a bounded
shear flow using stokesian dynamics simulation, and indicated
that the time periods of rotations increase as the fiber moves
closer to the wall.

In this paper, we focus on the study of hydrodynamic
interactions between multiple fibers and the disturbance effects
of a bounded wall on fiber motions. The finite element method
is applied to calculate the forces and torques exerted on each
fiber. The force and torque distribution around the fiber will be
distinct with the presence of other fibers or a bounded wall in
close proximity.

2 METHODOLOGY
In our methodology, we use a finite element model to

represent the fluid domain between multiple fibers and the
outside bounded wall (cavity). Velocity and pressure distribution
in fluid domain are calculated using a finite element method
with the velocity boundaries specified on fiber surfaces and
the bounded wall. Our method searches fibers’ linear and
angular velocities, which zero the net forces and torques
exerted by the surrounding fluid on fibers. The forces and
torques come from two scenarios: gross moving fluid and
hydrodynamic interactions from other fibers. This method solves
both long-range and short-range interactions (lubrication effect)
simultaneously. Our methodology is described as follows:

2.1 Finite element model
The fluid domain is modeled as tetrahedral meshes, as

shown in Fig.2(a). The velocity boundary conditions are
specified on fiber surfaces and the outside wall, as shown in
Fig.2(b), in which BC2(A) refers to the velocity boundary on
the surface of fiber A. The governing equations in fluid are:

∇ ·U = 0 (4)

µ∇
2U = ∇p (5)

where µ is the viscosity of bulk flow, U is the velocity vector
in fluid, and p is the pressure distribution in fluid. The boundary
conditions used for solving velocity and pressure distribution are:

(BC1) On the bounded wall (cavity):

UBC1 = U0 (6)

(BC2) On the fiber surface (e.g., for fiber A):

UBC2(A) = UA
c + ωωω

A× r (7)
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where U0 is the undisturbed shear flow, r is the displacement
vector of point on fiber surface, UA

c = [ẋc, ẏc, żc] is the translation
velocity of fiber A’s centroid, and ωωωA = [ωA

x ,ω
A
y ,ω

A
z ]

T is the
angular velocity of fiber A with respect to the global coordinate
system xyz, defined as

ωωω
A =

ωA
x

ωA
y

ωA
z

=

 φ̇ + ψ̇ cosθ

−θ̇ sinφ + ψ̇ sinθ cosφ

θ̇ cosφ + ψ̇ sinθ sinφ

 (8)

Therefore, the boundary condition specified on the surface
of fiber A is defined by the translation velocities of fiber
A’s centroid and its angular velocities. In a similar manner,
for fibers B, C and so on, the velocity boundary conditions
BC2(B), BC2(C), etc. can be specified. Provided that all fibers’
linear and angular velocities are known, the governing equations
(cf. Eqs.(4) and (5)) could be solved using the finite element
method, and in turn the velocity and pressure distribution in bulk
fluid can be obtained.

2.2 Hydrodynamic force/torque
With the calculated velocity distribution U and pressure

distribution p in fluid, force and torque vector exerted on fiber
A can be calculated as

σσσ =−pδδδ + µ[∇U+(∇U)T ] (9)

FA =
∫
{σσσ ·n}dS (10)

TA =
∫
{r× (σσσ ·n)}dS (11)

where σσσ is the total stress in fluid, δδδ is the Kronecker detla, dS is
the surface integral, n is the unit normal vector on fiber surface
and r is same as that in Eq.(7). FA and TA are, respectively, net
force and net torque on fiber A.

Likewise, forces and torques exerted on fibers B, C, etc.
can be obtained. In a simple shear flow, a single fiber performs
a periodic tumbling motion within the moving fluid, described
as “Jeffery’s oribt”. When multiple fibers suspend in the fluid,
the hydrodynamic interactions between fibers come into play.
Specifically, the motion of one fiber will affect its surrounding
fluid, and in turn influence the motions of other fibers, and vice
versa. Therefore, the forces and torques on fiber A depend on
not only fiber A’s velocities, but also the motions of other fibers.
The force and torque vector on fiber A can be represented as

FA = FA(ẋA
c , ẏ

A
c , ż

A
c , φ̇

A, θ̇ A, ψ̇A, ẋB
c , ẏ

B
c , ż

B
c , φ̇

B, θ̇ B, ψ̇B, · · ·)
(12)

TA = TA(ẋA
c , ẏ

A
c , ż

A
c , φ̇

A, θ̇ A, ψ̇A, ẋB
c , ẏ

B
c , ż

B
c , φ̇

B, θ̇ B, ψ̇B, · · ·)
(13)

For fiber motions, the mass and mass moment of inertia of
small suspended fibers could be neglected, so the resultant forces
and torques on all fibers are always zero at each time instant.
Therefore, the linear and angular velocities of all fibers can be
calculated by solving the following system of equations.


FA(ẋA

c , ẏ
A
c , ż

A
c , φ̇

A, θ̇ A, ψ̇A, ẋB
c , ẏ

B
c , ż

B
c , φ̇

B, θ̇ B, ψ̇B, · · ·) = 0
TA(ẋA

c , ẏ
A
c , ż

A
c , φ̇

A, θ̇ A, ψ̇A, ẋB
c , ẏ

B
c , ż

B
c , φ̇

B, θ̇ B, ψ̇B, · · ·) = 0
FB(ẋA

c , ẏ
A
c , ż

A
c , φ̇

A, θ̇ A, ψ̇A, ẋB
c , ẏ

B
c , ż

B
c , φ̇

B, θ̇ B, ψ̇B, · · ·) = 0
TB(ẋA

c , ẏ
A
c , ż

A
c , φ̇

A, θ̇ A, ψ̇A, ẋB
c , ẏ

B
c , ż

B
c , φ̇

B, θ̇ B, ψ̇B, · · ·) = 0
. . . . . . . . . . . .

(14)
If there are two fibers (A and B) in the fluid, there are twelve

unknowns and twelve force/torque equilibrium equations (F =
[Fx,Fy,Fz] and T = [Tx,Ty,Tz]). Therefore, the velocities of fibers
at each time moment can be solved using a Newton-Raphson
iteration algorithm.

2.3 Update fiber orientations/positions
At each time step ti, provided that fiber positions and

orientations are given, the linear velocities of fiber centroid
(ẋc, ẏc, żc) and angular velocities (defined by φ̇ , θ̇ , ψ̇) are
obtained by solving Eq.(14) to give ẏi = f(ti,yi), where
y = [xA

c ,y
A
c ,z

A
c ,φ

A,θ A,ψA,xB
c ,y

B
c ,z

B
c ,φ

B,θ B,ψB, · · · ]. With the
specified time interval ∆t, we apply the 4th-order Runge-Kutta
algorithm to update fiber orientations (φ ,θ ,ψ) and centroid
positions (xc,yc,zc) in the next time time step ti+1 (= ti +4t).
The algorithm is shown as follows:

yi+1 = yi +
1
6

∆t(k1 +2k2 +2k3 +k4) (15)

where

k1 = f(ti,yi)

k2 = f(ti +0.5∆t,yi +0.5k1∆t)

k3 = f(ti +0.5∆t,yi +0.5k2∆t)

k4 = f(ti +∆t,yi +k3∆t)

3 EFFECT OF BOUNDED WALL
Experiments have shown that the fiber motion is observed

to have a longer period than that predicted by Jeffery. One
possible explanation is the existence of a bounded wall (cavity)
in experiments, while the fluid domain is assumed to be infinite
in Jeffery’s theory. The dimensionless parameter to quantify the
wall effect is

ε =
a
H

(16)
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FIGURE 3. Definition of wall effect: the ratio of fiber dimension to
the gap of two parallel wall

where a is the long axis of an ellipsoidal fiber, or the length
of a cylindrical fiber. H is the distance between the bounded
wall, shown in Fig.3. In Jeffery’s theory, the fiber exists in
an unbounded fluid, i.e., H = ∞ and ε = 0. However, the
existence of a bounded wall would change the velocity and
pressure distribution in bulk fluid. This has been approved in
a similar problem that a creeping uniform flow passes a fixed
sphere in an unbounded domain ( [20], [21]), seen in Fig.4. The
exact solution to that problem ( [21]) is

U = U∞−
3a
8

[
U∞

r
+

r U∞ · r
r3

]
− a3

32

[
U∞

r3 −3
r U∞ · r

r5

]
(17)

where a is the diameter of the spherical fiber, U∞ is the
undisturbed uniform fluid, r is the displacement vector in fluid,
and r is the magnitude of displacement vector. From the exact
solution of velocity distribution, we can see that at the position
where r = 5a, i.e. ε = a/r = 0.2, U differs from U∞ by about
8%. That is to say, if U∞ is specified at r = 5a, the velocity
distribution will deviate from Eq.(17), and depend on how far
away the wall is from the fiber.

In an analogous manner, for fiber suspensions, the presence

∞U

FIGURE 4. Uniform flow passes a fixed sphere in an unbounded fluid
domain

of wall also change the velocity and pressure distributions, and
in turn the fiber motions. In our methodology, we specify the
undisturbed simple shear flow on the bounded wall, which has a
finite distance from the fiber, so ε 6= 0. In our earlier work [6], we
showed that when ε ≤ 0.025, our results to solve a single fiber
motion within a viscous fluid are in an excellent agreement with
Jeffery’s solution. In this paper, we study the effect of different
ε ′s on fiber orientations. We use a finite element method to
simulate a single fiber motion in a bounded fluid domain with
different dimensions. The results are shown in section 4.2.

4 EXAMPLES AND IMPLEMENTATIONS
In this section, some examples are presented to validate the

proposed methodology. We use COMSOL to solve the governing
equations (cf. Eqs.(4) and (5)) in fluid using a finite element
method. Matlab is used to implement Newton-Raphson and
Runge-Kutta algorithm.

4.1 Hydrodynamic interactions
The parameter to quantify the effect of hydrodynamic

interactions is the ratio of fiber dimension to the distance between
fiber centroids, defined as:

ζ =
a
D

(18)

where D is the distance between the centroids of two fibers,
seen in Fig.5. When D � a, the long-range hydrodynamic
interactions come into play, and when D is close to a, the
short-range hydrodynamic interactions dominate. In this section,
various examples with different distances between fiber centroids
are presented. Fiber angles and positions are updated using a
Runge-Kutta method, and compared with Jeffery’s solution (cf.
Eqs.(1-3)) in the work below.

Any axisymmetric fiber has the same rotation as that of
the ellipsoidal fiber, but the equivalent aspect ratio r∗e needs to
be used instead of geometric aspect ratio re ( [5, 6]). In this
section, we study the hydrodynamic interactions between fibers
with different shapes, including ellipsoidal and cylindrical fibers.

φφ

FIGURE 5. Initial configurations of two fibers: (a) two ellipsoids; (b)
two cylinders
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FIGURE 6. Fiber positions and orientations in half period: two far-away ellipsoidal fibers (ζ = 0.075� 1)

4.1.1 Fibers are far away from each other When
two fibers are far away, i.e. H� a and ζ � 1, the hydrodynamic
interactions, called long-range interactions, are trivial, which
cannot visibly affect fiber motions. Here, we model two far-away
ellipsoidal fibers, with the initial configuration shown in Fig.5(a)
and the simulation parameters are tabulated in Table 1. The fiber
motions in half period are shown in Fig.6. In this example, both
fibers translate with the bulk flow in the z direction, because two
fiber centroids are initially located at yA

c = yB
c = 0.1 mm, where

the bulk fluid has a translation velocity with Uz = γ̇ y= 0.1 mm/s.

In terms of cylindrical fibers, we use the equivalent aspect
ratio (r∗e ) to describe fiber motions, i.e., r∗e = 6, and it will have
the same rotation as that of an ellipsoidal fiber with re = 6. From
[6], the cylinder’s geometric aspect ratio is re = 7.715, i.e., a =
0.386 mm and b= 0.05 mm, where a is the length of cylinder, and
b is the diameter of bottom surface. The initial configuration of
two cylindrical fibers is shown in Fig.5(b), with φ A

0 = φ B
0 =ψA

0 =
ψB

0 = 0, θ A
0 = θ B

0 = 90◦, xA
c = xB

c = 0, yA
c = yB

c = 0.1 mm, zA
c =

−2 mm, zB
c = 2 mm and D = 4 mm. So ζ = a/D = 0.0964�

1. The comparison between our data and Jeffery’s single fiber
solution is tabulated in Table 2 for both ellipsoidal and cylindrical
fibers. We find that the motions of two far-away cylindrical fibers

still follows Jeffery’s solution with the equivalent aspect ratio
used to quantify fiber motions.

TABLE 1. Parameters to simulate two far-away ellipsoids

Properties Parameters

fiber size long axis: a = 0.3 mm

(ellipsoidal fibers) short axis: b = c = 0.05 mm

geometric aspect ratio: re =
a
b = 6

fluid domain H = 12 mm, so ε = 0.025

initial orientation φ A
0 = φ B

0 = ψA
0 = ψB

0 = 0,

(cf.Fig.5(a)) θ A
0 = θ B

0 = 90◦

initial position xA
c = xB

c = 0,yA
c = yB

c = 0.1 mm,

(cf.Fig.5(a)) zA
c =−2 mm,zB

c = 2 mm,

so D = 4 mm, and ζ = 0.075� 1

properties of viscosity: µ = 100 pa · s

bulk fluid Shear flow: Uz = γ̇ y , where γ̇ = 1 s−1
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TABLE 2. Deviation of our data from Jeffery’s single fiber solution

Average of for two ellipsoids for two cylinders

relative errors (re = 6) (re = 7.715,r∗e = 6)

φ A (degree) 0.04% 0.2%

φ B (degree) 0.1% 0.08%

yA
c (mm) 0.7% 0.2%

yB
c (mm) 0.7% 0.1%

zA
c (mm) 0.6% 0.2%

zB
c (mm) 0.2% 0.02%

Therefore, when fibers are far away from each other, i.e.
ζ � 1, the hydrodynamic interactions are trivial, which do
not have obvious effects on fiber motions, which can still be
predicted by Jeffery’s theory.

4.1.2 Fibers are close to each other When ζ is
comparable with or greater than 1, the effect of hydrodynamic
interactions on fiber motions can be observed obviously.
In this section, we give three examples to model the
hydrodynamic interactions between two close fibers, and
study the corresponding effects on fiber motions as two fibers
move closer to each other.

Example 1: Two horizontal cylindrical fibers with ζ = 0.95
The configuration of two cylindrical fibers are shown in

Fig.5(b). In this example, we use the same fluid domain and
bulk fluid as those in Table 1. Only the initial configurations of
fibers are different, which are tabulated in Table 3.

TABLE 3. Parameters to simulate two close cylinders

Properties Parameters

fiber size length: a = 0.386 mm

(cylindrical fibers) diameter: b = 0.05 mm

re =
a
b = 7.715, r∗e = 6 (see ref. [6])

initial orientation φ A
0 = φ B

0 = θ A
0 = θ B

0 = 90◦

(cf.Fig.5(b)) ψA
0 = ψB

0 = 0

initial position xA
c = xB

c = 0,yA
c = yB

c = 0.1 mm,

(cf.Fig.5(b)) zA
c =−0.2029 mm,zB

c = 0.2029 mm,

so D = 0.4058 mm, and ζ = 0.95

The motion of a single cylindrical fiber with the equivalent
aspect ratio r∗e = 6 would have the same periodic tumbling
motion as that of an ellipsoidal fiber with geometric aspect ratio
re = 6 (see ref. [6] and section 4.1.1). With the presence of
another cylindrical fiber in close proximity, the fiber motion will
be slowed down, with the time period of fiber motions compared
with that predicted by Jeffery’s theory in Table 4, from which we
find that the short-range hydrodynamic interactions slow down
fiber motions. Therefore, we posit that the slow motion observed
in refs. [2] and [3] could result from fiber-fiber interactions in
semi-dilute suspensions.

TABLE 4. Results of time periods of fiber rotations

Scenarios Two close A single Relative

cylinders cylinder error

Time period 43.2 s 38.75 s 11.5%

The fiber motions and local velocity distribution around
fibers in the y direction are shown in Fig.7.

t=0s t=4s

t=8s t=12s

t=16s t=21.6s

-0.05 mm/s 0.05 mm/s

FIGURE 7. Fiber motions and velocity distribution in the y direction

Example 2: Two horizontal cylindrical fibers with ζ = 0.97
This example is similar to example 1, but with a closer

distance between fiber centroids. In this example, we still use
two horizontal cylindrical fibers, with zA

c = −0.198 mm,zB
c =

0.198 mm, so ζ = 0.97, which is closer to 1. All other parameters
are the same as those in example 1.

The plot of fiber positions and orientations in half period
is shown in Fig.8, from which we find that the short-range

7



FIGURE 8. Fiber positions and orientations in half period: two adjacent cylindrical fibers (ζ = 0.97≈ 1)

hydrodynamic interactions move the fibers off Jeffery’s
trajectory, and slow down fiber motions. In this example, two
cylindrical fibers has a physical contact at t = 20.8 s. After
the collision, multiple fibers will become a floc, and move
together, which is beyond the scope of this paper. By comparing
example 1 and 2, we find that as fibers move closer to each other,
inter-fiber hydrodynamic interactions become stronger, and the
deviation from Jeffery’s trajectory gets more obvious.

Example 3: Two vertical ellipsoidal fibers with ζ = 1.5
When ζ is greater than 1, i.e., the distance between fiber

centroids is less than fiber size, the hydrodynamic interactions
becomes stronger, and the possible physical/mechanical contacts
happen more frequently. The initial configuration of two
ellipsoidal fibers (re = 6) can be seen in Fig.5(a), with the initial
configurations: φ A

0 = φ B
0 = ψA

0 = ψB
0 = 0,θ A

0 = θ B
0 = 90◦ and

xA
c = xB

c = yA
c = yB

c = 0,zA
c =−0.1 mm,zB

c = 0.1 mm. Therefore,
D = 0.2 mm, and ζ = 1.5 > 1.

The local velocity distribution around fibers in the y
direction and the motions of two ellipsoidal fibers are simulated
in Fig.9 as a function of time. The plot of fiber positions and
orientations in half period is shown in Fig.10. We see that fiber
motions apparently deviate from Jeffery’s single fiber solution,
and fibers do not translate with the undisturbed simple shear flow

evaluated at fiber centorids. Instead, fibers have up-and-down
motions and the collision happens at t = 13.6 s in this example.

4.2 Effect of bounded wall
The fiber motion with the presence of a bounded wall is

simulated and the slow motion is observed with large ε , i.e.,
the size of fluid domain is comparable with fiber dimension (cf.

t=0s t=2s t=4s t=6s

t=8s t=10s t=12s t=13.6s

-0.05 mm/s 0.05 mm/s

FIGURE 9. Fiber motions and velocity distribution in y direction
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FIGURE 10. Fiber positions and orientations in half period: two closer ellipsoidal fibers (ζ = 1.5 > 1)

Fig.3). In this section, we model fiber motions in a bounded
wall with different sizes of fluid domain, and the simulation
parameters are set up in Table 5.

TABLE 5. Parameters of a single ellipsoidal fiber in a bounded wall

Properties Parameters

fiber size a = 0.3 mm, b = c = 0.05 mm

(ellipsoidal fiber) re =
a
b = 6

fluid domain H = 0.5 mm,1 mm,6 mm or 12 mm

ε = 0.6,0.3,0.05 or 0.025

initial configuration φ0 = 0, θ0 = 90◦, ψ0 = 0

xc = 0, yc = 0, zc = 0

properties of viscosity: µ = 100 pa · s,

bulk fluid Uz = γ̇ y , where γ̇ = 1 s−1

The fiber orientations and time periods according to different
fluid sizes are shown in Fig.11, from which we can see that when
ε ≤ 0.025, the true percent relative error of time period compared

with that obtained from Jeffery’s solution is below 0.08%. And
the time periods of fiber rotations increase as ε increases, i.e., the
dimension of fluid domain become closer to fiber size. The slow
fiber motion observed in [2] and [3] could also be attributed to
the effect of a bounded wall (cavity).

FIGURE 11. Effect of bounded wall on fiber orientations
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5 CONCLUSION AND FUTURE WORK
In this paper, a methodology, which combines a finite

element method, a Newton-Raphson method and a Runge-Kutta
method, is proposed to solve the motion of multiple suspended
fibers, including ellipsoidal and cylindrical fibers within a
viscous fluid. The hydrodynamic interactions between fibers
and the effect of a bounded wall are studied. Both these two
issues are about the disturbance effects of the presence of other
objects (fibers or a bounded wall) on fiber motions. We find that
the hydrodynamic interactions only take effect when two fibers
are close to each other, which could slow down fiber motions.
Additionally, the wall effect is found to retard fiber motion in our
simulations.

For the future work, this work will be extended to study
concentrated fiber suspensions, i.e., the volume fraction of fibers
is so high that physical/mechanical contacts dominate.
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