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ABSTRACT 

This paper presents a numerical approach for calculating the 
single fiber motion in a viscous flow. This approach addresses 
such issues as the role of axis ratio and fiber shape on the 
dynamics of a single fiber, which was not addressed in 
Jeffery’s original work. We develop a Finite Element Method 
(FEM) for modeling the dynamics of a single rigid fiber 
suspended in a moving fluid. Low Reynolds number viscous 
flows are considered since these best represent the flow 
conditions for a polymer melt within a mold cavity. Our 
approach seeks the fiber angular velocities that zero the 
hydrodynamic torques acting on the fiber using the Newton-
Raphson method. Fiber motion is then computed with a 
Runge-Kutta method to update the position, i.e. the angle of 
the fiber as a function of time. This method is quite general 
and allows for fiber shapes that include, but are not limited to, 
ellipsoidal fibers (such as that studied in Jeffery’s original 
work), cylindrical fibers and beads-chain fibers. The 
relationships between equivalent axis ratios and geometrical 
axis ratios for cylindrical and beads-chain fibers are derived in 
this paper.  

Keywords: Jeffery’s obit, numerical methods, short-fiber 
composite, fiber orientation, equivalent axis ratio, cylindrical 
fiber, beads-chain fiber 

 

1    INTRODUCTION 

Mechanical properties of short-fiber-reinforced composite 
systems are largely dependent on the fiber orientation within 
the polymer matrix which is determined during the 
manufacturing process. The orientation state of the fibers is 
often computed based on the methods first proposed by Jeffery 
[1] which considered a single ellipsoidal fiber rotating in a 
Newtonian, incompressible homogeneous flow. Jeffery 
pointed out that fiber has a closed periodic tumbling motion 
within the fluid, often referred to as “Jeffery’s orbit”. Many 
researches [2]-[5] have observed this periodic phenomenon in 
experiments. But Taylor [2] found in the experiments that a 
fiber may deviate from Jeffery’s orbit after a very long time, 
i.e. there exists a slow drift in Jeffery’s orbit, which might 
result from the neglected terms in Jeffery's approximate 
equation.  
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To better understand the motion of a fiber, we developed a 
Finite Element Method (FEM) for modeling the dynamics of a 
single rigid fiber suspended in a moving fluid. Newton-
Raphson and Runge-Kutta method are utilized to update the 
positions of fiber at select times. This methodology produces a 
reasonable agreement with Jeffery’s solution provided the 
same assumptions apply. It could be extended to consider 
other effects, such as fluid inertia, so as to give more insights 
on explaining the small deviation in experiments.  

Based on Jeffery’s work, researchers extended to study fiber 
suspensions in broader areas [6][7]. Jia [8] considered the slip 
boundary condition on the fiber surface, while Jeffery applied 
the non-slip boundary condition. Junk [9] studied the effect of 
a bounded wall around the fiber, and pointed out that Jeffery’s 
result represents the leading order equations of a singularly 
perturbed flow problem. Leal [7] analyzed the non-Newtonian 
effect of a fluid with the presence of fibers. In Jeffery’s theory, 
fluid inertia and particle inertia are ignored, so Leal [7] studied 
the fiber motion under the consideration of weak fluid inertia 
and Altenbach [10] analyzed the influence of the rotary 
inertia. To study the non-dilute fiber suspension, Batchelor 
[11][12] proposed the constitutive model to take into account 
the contribution of fibers to the total stress tensor. Orientation 
averaging using Jeffery’s approach has since yielded the 
orientation tensor methods [13], which are applied regularly 
today in industry. Many new closure approximations [14][15] 
have been developed to allow these orientation averaging 
approached to yield reasonably accurate results. With the 
understanding of rigid fiber migration within a viscous fluid, 
researchers moved on to the study of flexible fibers [16]-[18]. 
Yamamoto [16] regarded a fiber as a group of beads that are 
lined up and bonded to each neighbor as beads chain. Each 
pair of bonded spheres can stretch, bend and twist. Wang [17] 
used the rod-chain model to model the flexible fiber. 

In this paper, we focus on the migration of fibers with 
axisymmetric shapes, such as cylindrical fibers and beads-
chain fibers. One main factor that dictates Jeffery’s orbit is the 
fiber’s geometric axis ratio, obtained from the fiber’s shape. 
The study of fibers with different shapes initiated from 
Bretherton [19], who proposed that Jeffery's theory is also 
valid for general axisymmetric bodies with fore-aft symmetry, 
and the equivalent axis ratio (ݎ௘∗) is used, which differs from 
geometric axis ratio (ݎ௘). For cylindrical fibers, the periodic 
orbit is observed in [3][5][20][21]. These authors found in 
experiments that the cylindrical fibers have different rotation 
periods from ellipsoidal fibers. Trevelyan [3] experimentally 
estimated the ratio of the equivalent axis ratio to the geometric 
axis ratio (ݎ௘∗/ݎ௘) to be approximately 0.7. Petrich [20] found 
that the ratio is 0.687 for ݎ௘ ൌ 50 and 0.623 for ݎ௘ ൌ 72. Cox 
[22] proposed the theoretical equation to calculate the 
equivalent axis ratio for slender cylindrical fibers, but the 
equation is not valid for short rod-like fibers, with an axis ratio 
smaller than 20. Additionally, we find that current simulation 
methods provide little attention to the motion of fibers with 
short geometric axis ratios.  

Hence, in this paper, we study the equivalent axis ratios by 
using the Finite Element Method. We are able to numerically 

generate data that describes the relationships between the 
equivalent axis ratios and geometric axis ratios for cylindrical 
fibers over a wide range of axis ratios. The simulation results 
agree with the experimental data for short cylindrical fibers [5] 
and also conform to Cox’s theory [22] for large-aspect-ratio 
cylindrical fibers. To verify our results, we numerically 
simulate the motion of a cylindrical fiber with geometric axis 
ratio, which is compared with that of an ellipsoidal fiber with 
the corresponding equivalent axis ratio. The two sets of data 
match very well. We also study the motion of beads-chain 
fibers, which is a good candidate to model flexible fibers [16]. 
The equivalent axis ratio for beads-chain fiber is derived in 
this paper. We validate our results by evaluating the motion of 
a beads-chain fiber, which is compared with that of an 
ellipsoidal fiber.  

Above all, our main contributions in this paper are: 

 A methodology which combines the Finite Element 
Method, the Newton-Raphson method and the Runge-
Kutta approach to study the dynamics of fiber motion 
within a fluid   In this methodology, the Finite Element 
Method is applied to solve the Navier-Stokes equation, 
so as to evaluate the hydrodynamic forces and torques on 
the fiber. The Newton-Raphson method is applied to 
search for angular velocities, which lead to zero torques 
exerted on the fiber. The Runge-Kutta method is utilized 
to update the fiber positions with respect to time. Our 
approach using ellipsoidal fibers yields the fiber angle as 
a function of time that exactly matches Jeffery’s solution.  

 Equivalent axis ratios for cylindrical fibers and 
beads-chain fibers   The numerical data generated from 
our approach is valid for both short and slender fibers. 
Additional calculations are then performed to compare 
the fiber alignment rate of ellipsoidal fibers with that of 
cylindrical and beads-chain fibers, which confirms that 
the motions of axisymmetric fibers follows Jeffery’s 
orbit, and the equivalent axis ratios derived from our 
numerical method are verified.  

The paper is organized as follows. Section 2 presents the 
methodology, including the Finite Element Method, the 
Newton-Raphson method and the Runge-Kutta method. 
Section 3 derives the relationships between the equivalent axis 
ratios and geometric ratios for cylindrical fibers and beads-
chain fibers. Implementation and illustrative examples are 
given in Section 4. Finally, conclusions and future work are 
presented in Section 5. 

2    VALIDATION OF JEFFERY’S EQUATION 

In this section, Jeffery’s equation is revisited and validated by 
using our numerical schemes. This approach is not only 
applicable to ellipsoidal fibers, but also fibers of arbitrary 
shapes.  

2.1 Jeffery’s equation 

Jeffery [1] proposed the method to solve Stokes equation with 
the moving boundary conditions in a local coordinates system 
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