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ABSTRACT

This paper presents a numerical approach for calculating the
single fiber motion in a viscous flow. This approach addresses
such issues as the role of axis ratio and fiber shape on the
dynamics of a single fiber, which was not addressed in
Jeffery’s original work. We develop a Finite Element Method
(FEM) for modeling the dynamics of a single rigid fiber
suspended in a moving fluid. Low Reynolds number viscous
flows are considered since these best represent the flow
conditions for a polymer melt within a mold cavity. Our
approach seeks the fiber angular velocities that zero the
hydrodynamic torques acting on the fiber using the Newton-
Raphson method. Fiber motion is then computed with a
Runge-Kutta method to update the position, i.e. the angle of
the fiber as a function of time. This method is quite general
and allows for fiber shapes that include, but are not limited to,
ellipsoidal fibers (such as that studied in Jeffery’s original
work), cylindrical fibers and beads-chain fibers. The
relationships between equivalent axis ratios and geometrical
axis ratios for cylindrical and beads-chain fibers are derived in
this paper.
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1 INTRODUCTION

Mechanical properties of short-fiber-reinforced composite
systems are largely dependent on the fiber orientation within
the polymer matrix which is determined during the
manufacturing process. The orientation state of the fibers is
often computed based on the methods first proposed by Jeffery
[1] which considered a single ellipsoidal fiber rotating in a
Newtonian, incompressible homogeneous flow. Jeffery
pointed out that fiber has a closed periodic tumbling motion
within the fluid, often referred to as “Jeffery’s orbit”. Many
researches [2]-[5] have observed this periodic phenomenon in
experiments. But Taylor [2] found in the experiments that a
fiber may deviate from Jeffery’s orbit after a very long time,
i.e. there exists a slow drift in Jeffery’s orbit, which might
result from the neglected terms in Jeffery's approximate
equation.
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To better understand the motion of a fiber, we developed a
Finite Element Method (FEM) for modeling the dynamics of a
single rigid fiber suspended in a moving fluid. Newton-
Raphson and Runge-Kutta method are utilized to update the
positions of fiber at select times. This methodology produces a
reasonable agreement with Jeffery’s solution provided the
same assumptions apply. It could be extended to consider
other effects, such as fluid inertia, so as to give more insights
on explaining the small deviation in experiments.

Based on Jeffery’s work, researchers extended to study fiber
suspensions in broader areas [6][7]. Jia [8] considered the slip
boundary condition on the fiber surface, while Jeffery applied
the non-slip boundary condition. Junk [9] studied the effect of
a bounded wall around the fiber, and pointed out that Jeffery’s
result represents the leading order equations of a singularly
perturbed flow problem. Leal [7] analyzed the non-Newtonian
effect of a fluid with the presence of fibers. In Jeffery’s theory,
fluid inertia and particle inertia are ignored, so Leal [7] studied
the fiber motion under the consideration of weak fluid inertia
and Altenbach [10] analyzed the influence of the rotary
inertia. To study the non-dilute fiber suspension, Batchelor
[11][12] proposed the constitutive model to take into account
the contribution of fibers to the total stress tensor. Orientation
averaging using Jeffery’s approach has since yielded the
orientation tensor methods [13], which are applied regularly
today in industry. Many new closure approximations [14][15]
have been developed to allow these orientation averaging
approached to yield reasonably accurate results. With the
understanding of rigid fiber migration within a viscous fluid,
researchers moved on to the study of flexible fibers [16]-[18].
Yamamoto [16] regarded a fiber as a group of beads that are
lined up and bonded to each neighbor as beads chain. Each
pair of bonded spheres can stretch, bend and twist. Wang [17]
used the rod-chain model to model the flexible fiber.

In this paper, we focus on the migration of fibers with
axisymmetric shapes, such as cylindrical fibers and beads-
chain fibers. One main factor that dictates Jeffery’s orbit is the
fiber’s geometric axis ratio, obtained from the fiber’s shape.
The study of fibers with different shapes initiated from
Bretherton [19], who proposed that Jeffery's theory is also
valid for general axisymmetric bodies with fore-aft symmetry,
and the equivalent axis ratio (r.") is used, which differs from
geometric axis ratio (r,). For cylindrical fibers, the periodic
orbit is observed in [3][5][20][21]. These authors found in
experiments that the cylindrical fibers have different rotation
periods from ellipsoidal fibers. Trevelyan [3] experimentally
estimated the ratio of the equivalent axis ratio to the geometric
axis ratio (r;°/r,) to be approximately 0.7. Petrich [20] found
that the ratio is 0.687 for r, = 50 and 0.623 for r, = 72. Cox
[22] proposed the theoretical equation to calculate the
equivalent axis ratio for slender cylindrical fibers, but the
equation is not valid for short rod-like fibers, with an axis ratio
smaller than 20. Additionally, we find that current simulation
methods provide little attention to the motion of fibers with
short geometric axis ratios.

Hence, in this paper, we study the equivalent axis ratios by
using the Finite Element Method. We are able to numerically

generate data that describes the relationships between the
equivalent axis ratios and geometric axis ratios for cylindrical
fibers over a wide range of axis ratios. The simulation results
agree with the experimental data for short cylindrical fibers [5]
and also conform to Cox’s theory [22] for large-aspect-ratio
cylindrical fibers. To verify our results, we numerically
simulate the motion of a cylindrical fiber with geometric axis
ratio, which is compared with that of an ellipsoidal fiber with
the corresponding equivalent axis ratio. The two sets of data
match very well. We also study the motion of beads-chain
fibers, which is a good candidate to model flexible fibers [16].
The equivalent axis ratio for beads-chain fiber is derived in
this paper. We validate our results by evaluating the motion of
a beads-chain fiber, which is compared with that of an
ellipsoidal fiber.

Above all, our main contributions in this paper are:

® A methodology which combines the Finite Element
Method, the Newton-Raphson method and the Runge-
Kutta approach to study the dynamics of fiber motion
within a fluid In this methodology, the Finite Element
Method is applied to solve the Navier-Stokes equation,
so as to evaluate the hydrodynamic forces and torques on
the fiber. The Newton-Raphson method is applied to
search for angular velocities, which lead to zero torques
exerted on the fiber. The Runge-Kutta method is utilized
to update the fiber positions with respect to time. Our
approach using ellipsoidal fibers yields the fiber angle as
a function of time that exactly matches Jeffery’s solution.

® Equivalent axis ratios for cylindrical fibers and
beads-chain fibers The numerical data generated from
our approach is valid for both short and slender fibers.
Additional calculations are then performed to compare
the fiber alignment rate of ellipsoidal fibers with that of
cylindrical and beads-chain fibers, which confirms that
the motions of axisymmetric fibers follows Jeffery’s
orbit, and the equivalent axis ratios derived from our
numerical method are verified.

The paper is organized as follows. Section 2 presents the
methodology, including the Finite Element Method, the
Newton-Raphson method and the Runge-Kutta method.
Section 3 derives the relationships between the equivalent axis
ratios and geometric ratios for cylindrical fibers and beads-
chain fibers. Implementation and illustrative examples are
given in Section 4. Finally, conclusions and future work are
presented in Section 5.

2 VALIDATION OF JEFFERY’S EQUATION

In this section, Jeffery’s equation is revisited and validated by
using our numerical schemes. This approach is not only
applicable to ellipsoidal fibers, but also fibers of arbitrary
shapes.

2.1 Jeffery’s equation

Jeffery [1] proposed the method to solve Stokes equation with
the moving boundary conditions in a local coordinates system
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x'y'z'. This local coordinates system is rotating with respect to
the global coordinates system xyz, shown in Fig.1.

Fig.1 xyz is the global coordinate system translating with
fiber but without rotation, and x'y’z’ is the local coordinate
system translating and rotating with fiber. 8 is the angle
between x and x' axis, ¢ the angle between xy and xx '
plane, and ¥ the angle between y’ and xx’' plane.

By using Lamb’s classic treatise [24] and assuming the free-
torque particle, Jeffery solved the coupled Ordinary
Differential Equations (ODEs), i.e. ¢(t),0(t),¥(t), for
simple shear flow, where ¢(t), 0(t), Y(t) are expressed as

¢(t) = tan™? (retan ﬁ) )
0(t) = tan™! —e )
p(©) = [; ¢ - d)cosodt 3)

where 7, is the axis ratio of fiber, i.e. the ratio of semi-long
axis and semi-short axis, y the flow shear rate, C a constant of
integration called the orbit constant, determined by the initial
configuration of fiber orientation. C varies between 0 and +oo.
C = 0 corresponds to the fiber rolling along its symmetric axis,
and C = +oo represents the periodic tumbling of fiber in the
yz plane, shown in Fig.2(b). For axisymmetric fibers, we only
take into account ¢(t) and 6(t), because the rotation along
fiber’s symmetric axis has no effect on the fiber orientation.
And by differentiating Egn.(1), (2) and (3), the angular
velocity ¢ (t), 8(t),y(t) can be obtained, with ¢ (t) shown in
Fig.2(a).

From Fig.2(b), we can see that the fiber motion follows
Jeffery’s orbit, with the period

21 1
T = 7 (Te + Z) (4)
which is only a function of the flow shear rate y and the
fiber’s geometric axis ratio r,. Hence, fiber shape has a great
influence on the characteristics of fiber migration, which is
studied in Section 3 in this paper.

@ (b)
Fig.2 (a) Distribution of ¢(t) and ¢(¢t) in one period; (b)
Jeffery’s orbit with different orbit constant C's

2.2 Numerical validation

In recent years, computational methods [25][26] have been
carried out to solve the fluid mechanics problems. In this
section, we apply numerical schemes to solve the motion of a
single fiber within a viscous fluid. In order to validate
Jeffery’s equation, we set the same conditions as those in
Jeffery’s paper. The basis is that the fiber is moving so as to
produce no force and no torque from the fluid. An overview of
the methodology is described below.

STEP 1: With a given ¢, 8;,; (i starts from 0), the finite
element model for the fluid domain between fiber surface and
far-away fluid boundary is defined. In this model, we need to
know ¢;, 8;,1; to define the velocity boundary around fiber
surface so as to calculate the force and torque exerted on fiber.
Hence, the hydrodynamic torque (M) is a function of ¢, 6,1,
denoted as M(¢,6,)) . Note that based on Jeffery’s

assumption, the desirable ¢;, 8;,1; give rise to zero torques on
the fiber.

STEP 2: Use the Newton-Raphson method to find the
expected ¢;,0;,1);, that generates zero torques along any
spatial axis, i.e. solve M(¢,6,v) = 0 for each time moment
t;.

Note that at different moments in time, the solution to
M(¢,6,v) = 0 is different, because the finite element model,
defined by ¢, 6,1, is changing with respect to time. Hence,
we regarded ¢;, ;, y; as a function of ¢;,0; and ;, denoted
here as y; = f(t,y,), where y; = [¢;, 6;, ¥;]".

STEP 3: Use a 4™ order Runge-Kutta method to update ¢,
0;11, Y41 s follows:

Yier =¥ t % (k; + k; + k3 +Ky) ®)
where

ky = f(t;,y:)

k,=f (ti +2ALy; + %klAt)

K;=f (ti +oAty; + %szt)
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Therefore, with knowledge of only the starting angles
b0, 00, Yy, the fiber’s positions as a function of time can be
steadily obtained, i.e. ¢;, 6;, ; and ¢;, 8;,p; for the fiber are

updated as time increases. The details are illustrated as follows.

2.2.1 Finite element model The Finite Element Method is
utilized to solve the velocity and pressure distribution within
the fluid, so as to calculate the force and torque on the fiber.
We use tetrahedral meshes to represent the fluid domain, with
two velocity boundary conditions: far-away fluid velocity
(BC1) and velocity on fiber surface (BC2), shown in Fig.3.
For an axisymmetric fiber, such as an ellipsoid, only ¢ and 9,
as defined in Fig.1, are needed to define the fiber’s position.

BC2

Fig.3 (a) 3D finite element model (Mesh model); (b) Mesh
model in YZ plane with two velocity boundaries (BC1 and
BC2); (c) Velocity distribution (w' = yy) in the yz plane.

In our model, all governing equations and boundary conditions
are defined in the global coordinate system xyz, while Jeffery
solved the problem in local coordinate system x'y’z’. Here, the
governing equations in our model are

(1) Steady Navier-Stokes equation: pU-VU = —Vp + uVv?U
(2) Continuity equation: V-U =0

where U represents the velocity distribution of fluid flow, p
the pressure distribution, p the density of the fluid, u the
absolute viscosity of the fluid. And the velocity boundary
conditions are

(1) For far-away fluid domain (BC1): U = Lx
(2) On the fiber surface (BC2): U = Uy + B(w)x

where U, is the translation velocity of the fiber centroid,
which follows the movement of the fluid at that point. L is the

0 0 O
velocity gradient, and for simple shear flow, L = (0 0 0),

0y 0
in which y is the flow shear rate. x is the displacement vector.
B(w) is the angular velocity matrix, defined as

0 —w, Wy,
B(w) =RRT =| w, 0 w, (6)
—W, Wy 0
where w,, w,, w, are the fiber angular velocities with respect
to X, y, z axis respectively, defined as

Wy ¢ + 1 cosb
» = Iwyl = [—6' sing + v sinf cos¢ @)
Wz 6 cosp +  sind sing

And R is the direction cosine matrix, and R the derivative of R
with respect to time.

R=|m; m, ms

Tll le Tl3

L L I
l 8

where

ly = cos6, my = sinfcos¢, n, = sinbsing

l, = —sinfcosy, m, = —singsiny + cosfcospcosy
n, = cos¢siny + cosOsingcosy

l; = sinfsiny, my = —sin¢cosy — cosOcospsiny
ng = cosgpcosy — cosfsingpsiny

Therefore, in our finite element model, ¢;, 6;, ¥; determine
the velocity boundary condition BC2, which affects the U and
p within the fluid. After solving the finite element model, the
net force F and torque M, on the fiber can be obtained using
the following equations

6 = —p8;; + u[VU + (VU)'] )
F= [{oc-n}dS (10)
M, = [{x X (6 -n)}dS (11)

where  is the absolute viscosity, §;; Kronecker delta, and n
the unit normal vector at fiber surface, F = F,i + Fj + F,k,
and M, = M,i + M,j + M,k

Note that in order to verify Jeffery’s orbit, we maintain the
following conditions within our finite element model, which
are analogous to Jeffery’s assumptions:

a) Make sure the flow domain is much bigger than the fiber
dimension, because Jeffery assumed the unbounded fluid
domain in his paper. Hence, in our finite element model, we
make ¢ = [Ha2doman 5 4,

fiber size

b) The local Reynolds number (Re = ”#Ld) is much smaller

that 1, where p is the fluid density, 4 absolute viscosity of
fluid, U characteristic velocity and d characteristic length of
fiber. Then the convection term pU-VU in Navier-Stokes
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equation can be neglected when solving the finite element
model.

2.2.2 Search zero torque From section 2.2.1, we see that
the hydrodynamic torque M, is a function of ¢, @ and 1. Our
purpose here is to find the exact @,,¢, Oope, Yope, Which zero
the torques M, , M, and M, simultaneously, with the
expression shown as follows.

M ($,6,9) =0
My (¢.6,9) =0 (12)
M,($,6,4) =0

We use the Newton-Raphson method to solve
Boptr Oopt» Yoperespectively by updating ¢; 6; ; , shown as
(i1 Oisr Yieal = [d: 6; W™ —[J'[Fi] (13)
where [F;] is the torque vector evaluated at [¢; 6; ¥;]T,
shown as
UM CINIRT
i - y(¢u 91,1/)) (14)
Mz(¢if6it )

And [J;] is the Jacobian matrix evaluated at [¢; 6; ¥;]",
shown as

[ (@0 60v) 55 (@060 T (du b))
U = ‘WY(@,el,w) d“y(qbl,euw) "MY(¢L,91.¢)(15)
d“Z(qbl,euw) 2 (s, 61, 9;) d“l(qbl.euw)

where the elements are evaluated using forward finite
difference method. For example,

dM, M, (4 +A4,6,.4) (16)

dg  4+Ag
The same method can be used to evaluate other eight elements
in the Jacobian matrix.

t=4.8 sec t=7.2sec t=19.68 sec

Fig.4 Fiber migration simulation by using numerical
methods in simple shear flow (w'=1yy). Upper left: 3D
finite element model; Others: fiber migration at select
moments in time shown in the yz plane

Therefore, in any moment t;, we search for the right ¢;, 6,
¥;, which zero the torques exerted on the fiber. And the
velocities are substituted into Eqn.(5) to update the fiber
position for the next time step t;,,. The migration of the fiber
is displayed in Fig.4.

3 EQUIVALENT AXIS RATIOS FOR SYMMETRIC
FIBERS WITH FORE-AFT SYMMETRY

Jeffery’s equation is derived based on an ellipsoidal fiber. In
this section, we analyze the orientations of fibers with other
axisymmetric shapes, such as cylindrical and beads-chain
fibers.

In Bretherton [19] and Cox [22]’s work, the symmetric fibers
are demonstrated to have a similar periodic tumbling motion
to that observed for ellipsoidal fibers, but the equivalent axis
ratio r,” is utilized to quantify the fiber motion instead of the
geometric axis ratio 7,. In [19] and [22], only slender fibers
with large r, are considered, and Cox’s theoretical derivation
for r,” does not apply to short fibers. In this paper, we use
numerical methods to calculate the equivalent axis ratios of
axisymmetric fibers with fore-aft geometry. And we use the
methodology, proposed in Section 2, to simulate the migration
of cylindrical fibers within a fluid, and compare with that of
an ellipsoidal fiber.

For simple shear flow (W' = yy), when we consider the fiber
motion with an orbit constant C = +o0, we have 6 = g,ll) =0

and 8 =y = 0 in Eqn.(7). So we have

-

where ¢ is obtained by differentiating Eqn.(1) with respect to
time. So

w—[wy

Wy = d) 2V+1 [Te +(1- Tez)COS¢] 17
And in [22], Cox considered the angular velocity w, and
torque M, when the fiber’s axis is in a vertical direction
(¢ =0) and a horizontal direction (¢ = m/2) direction,
shown in Fig.5.

y _ y _
y W=y w=yy
/ Fi
= S
/! !
—
i
——
/! Fi
/! V4
/ ’ "
X X

(a) Vertical direction

Fig.5 (a) fiber fixed in the vertical direction (¢ =0); (b)
fiber fixed in the horizontal direction (¢ = m/2)

(b) horizontal direction
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In the horizontal direction (¢ = 0), [wy]y = rzyﬁ and in the
y = rgyﬁrg If we suppose
that the fiber is fixed in both directions, a fiber will have
torques exerted by the surrounding fluid, with the torques in

two directions denoted as [M, ]y and [M,]y.

vertical direction (¢ = 1/2), [wy]

Cox [22] proposed that M, should be proportional to fiber’s
angular velocity w, and the equivalent axis ratio is defined as

* [wx]H [My]u
= [loadn _ / 18
e = Jloxv ~ My (18)

The key point is to calculate fiber angular velocities or torques
when the fiber is at rest. In this paper, the numerical method is
used to calculate the torque in both orientation directions.
Then the equivalent axis ratio is derived from Eqgn. (18).

In this paper we focus on cylindrical and bead-model fibers,
with the results showed in Section 4. The torques in the
vertical and horizontal directions can be calculated by
obtaining the velocity and pressure distribution in Finite
Element Method. In the model, the velocity boundary
condition at fiber surface is U = 0, i.e. fiber is fixed within the
fluid without translation and rotation. We derived the
relationships between the equivalent axis ratios and the
geometric axis ratios. The results for cylindrical fibers are
consistent with the experimental results for short rod-like
fibers, and also in accordance with Cox’s theoretical
derivation for slender fibers. We also use the methodology,
proposed in Section 2, to derive the motion of cylindrical and
beads-model fibers within a viscous fluid, and compare the
results with that of ellipsoidal fibers whose geometric axis
ratio equals to the equivalent axis ratios of cylindrical and
beads-chain fibers. Note that the geometric axis ratio is
defined as the ratio of the height and the radius for a
cylindrical fiber, and number of beads for a beads-chain fiber.
The simulation results are summarized in Section 4.

4 IMPLEMENTATION AND EXAMPLES

We implemented our numerical schemes by using COMSOL
[27] and Matlab [28]. COMSOL is used to implement the
computational fluid dynamics, and Matlab to search ¢, 6,1
and update angles as a function of time. In this section, several
examples are presented to illustrate and validate the proposed
approach.

4.1 Validation of Jeffery’s orbit

In this section, we numerically simulate the motion of an
ellipsoidal fiber in simple shear flow and Table 1 shows the
parameters for our finite element model. In this example, we
only update ¢ and 6, because i has no effect on the fiber
orientation.

Table 1. Ellipsoidal fiber motion in simple shear flow

Semi-long axis: 1.5m
Ellipsoidal Semi-short axis: 0.25m
Finite fiber Geometric axis ratio:
element L=1,=6
model | Boundary of
Fluid Length of cubic domain: 120m
domain
Slm?llce)v\slhear w = jy where y = 1
Fluid - - — 3
Para- Fluid d§n5|ty p = 1(kg/m?)
meters Fluid
absolute u=100(kg/m-s)
viscosity

The results from our numerical method are overlapped with
Jeffery’s solution in Fig.6.

1.5} ]
s 1t 1
S
g
05}
— Jeffery
+  Numerical
C 1
8 10
! Jeffery
0.8+ *  Numerical |
»
<06} 1
i
Zoa4f 1
e
0.2+ 1
00 2 6 8 10
t (sec)
(b)
15
14+
g13t
E=
g
o L2k
1.1 — Jeffery
1 +  Numerical
1 . . i
0 2 6 8 10
t (sec)
(c)
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Jeffery
¢ MNumerical
0.15} 1
w
°
g 01
I
°
"®0.05
04
0 2 4 6 8 10
t(sec)
(d)

Fig.6 Numerical results of the single fiber motion in 1/4
period: (a) change of ¢; (b) change of ¢; (c) change of 8;
(d) change of 8.

The comparison of two sets of data, i.e. Jeffery’s data and our
numerical data, are analyzed in Table 2. In this example, we
choose At = 0.2 seconds for the Runge-Kutta method.

Table 2. Comparison between Jeffery’s solution and
our numerical data
Data Sets Mean of Std. of
absolute errors absolute errors
¢ (radians) 0.0018269 0.0013376
¢'> (rad/s) 0.00019625 0.001266
0 (radians) -0.0009395 0.00037811
2] (rad/s) -8.5666e-005 0.00085256

4.2 Equivalent axis ratios

In this section, we numerically determine the equivalent axis
ratios for ellipsoidal, cylindrical and beads-chain fibers over a
large range of axis ratios.

4.2.1 Ellipsoidal fibers Our numerical data of the equivalent
axis ratios for ellipsoidal fibers are tabulated in Table 3.

Table 3. Equivalent axis ratios for ellipsoidal fiber
Geometric Axis Equivalent axis | Relative True
ratio Ratio Error

1 1.0081 0.008106
5 5.0081 0.0016246
10 9.9056 0.0094404
15 14.851 0.009953
20 20.146 0.0073192
30 29.999 3.89E-5
40 39.603 0.0099224
50 49.903 0.0019434
60 59.157 0.014058

From Table 3, we can see that, for ellipsoidal fibers, the
equivalent axis ratio is the same as geometric axis ratio. Next,
we derive the numerical data of equivalent axis ratios for
cylindrical and beads-chain fibers.

4.2.2 Cylindrical fibers For cylindrical fibers, the geometric
axis ratio is defined as the ratio of the height and the diameter.
The equivalent axis ratio for a cylinder is derived by
evaluating the torques in the vertical and horizontal directions,
shown in Fig.7. The relations between equivalent axis ratio 7,
and geometric axis ratio r, are shown in Fig.8, in which We
overlap our numerical data with that from Cox’s theoretical
equation[22] for slender fibers and Anczurowski’s experiment

[5].

¥ y

b w=yy w=yy

- 7 7

! /
—— E—
/ s
i —
/ /
= —
/ /
/ /
/—" z /—"‘
X X
@) (b)

Fig.7 (a) fiber fixed in the vertical direction; (b) fiber fixed
in the horizontal direction

In Cox’s theory, the equivalent axis ratio is derived from
1y =1,1.24,/In(1,)

Anczurowski fitted the experimental data with a straight line,
with the equation shown as follows. He pointed out that
1, = 1, when 7, = 1.68 for cylindrical fiber.

7 = 0.829r, — 0.287

In Fig.8, we compare our numerical data with Cox’s equation
and Anczurowski’s fitted line. And the data is tabulated in
Table 4.

45 i i
=== Cox's theoretical curve
40} | —— Anczurowski's fitted line
¢+ QOur numerical data
35¢
30} -1
25+
Te
20+
15¢ =y
10} ad
5?/'
1 0 20 30 40 50

Te

Fig.8 Comparison of our numerical data (red diamonds)
with Cox’s theoretical curve (dashed green curve) for
slender fibers and Anczurowski's experimental results
(solid black line)
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From Fig.8, we can see that for short fibers, our numerical
data is quite close to Anczurowski’s fitted straight line,
whereas for larger aspect ratios, our data corresponds quite
well with that of Cox’s theory for slender fibers when
r. > 20. The transition between the two models occurs as the
axis ratio increases from a short fiber to a long fiber, and is
well captured as can be seen from our numerical data, shown
in Table 4.

30 I I
~———Ellipsoid : : :
o5l ¢ lBeads-lchain R S — Y - ¢

P - - _— 7 A~ so—
r;15 ........ ........... .......... > A fonmnnneeand ...........

T N S ¥ S S S—

1 5 10 15 20 25 30

Te

Fig.10 Equivalent axis ratios for beads-chain fibers (red
diamonds) compared with ellipsoidal fibers (blue solid line)

From Fig.10, we see that the equivalent axis ratios are close to
those of ellipsoidal fibers (r,” = r,) with small axis ratios, but
for slender fibers, the equivalent axis ratios deviate largely
from those of ellipsoidal fibers.

Table 5. Equivalent axis ratio for beads-chain fibers

Table 4. Equivalent axis ratio for cylindrical fibers
Geometric Equivalent axis ratio
axis ratio Our data Cox Anczurowski
1 1.1168 Inf 1.2129
2 1.9415 2.9788 1.8969
3 2.7094 3.5491 2.5337
4 3.4292 4.2126 3.1305
5 4.1523 48871 3.7302
6 4.8476 5.5582 4.3068
7 5.4699 6.2224 4.8229
8 6.1787 6.8792 5.4106
9 6.9182 7.5288 6.0239
10 7.5891 8.1717 6.5802
15 10.899 11.303 9.325
20 14.193 14.328 12.057
30 20.122 20.171 16.974
40 25.676 25.825 21.58
50 31.355 31.347 26.289

In Section 4.3, we use the numerical schemes proposed in
Section 2 to simulate the evolution of a single cylindrical fiber
with r, = 6, and conclude that our numerical data generate
more accurate results than those of Cox [22] and Anczurowski

[5].

4.2.3 Beads-chain fiber For a beads-chain fiber, the
geometric axis ratio is defined as the number of beads
connected together. The geometric aspect ratio is 4. We
generate our numerical data for the beads-chain fiber by
calculating the torques when the fiber is at rest in the two
directions, shown in Fig.9. The equivalent axis ratios are
shown in Fig.10, with the numerical data tabulated in Table 5.
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Fig.9 (a) fiber fixed in the vertical direction (¢ = 0); (b)
fiber fixed in the horizontal direction (¢ = 1/2).

Geometric | Equivalent Geometric | Equivalent
axis ratio axis ratio axis ratio axis ratio

1 1 8 7.1196

2 1.9897 9 8.0313

3 2.8868 10 8.8975

4 3.7314 15 12.864

5 4.6173 20 17.978

6 5.5656 25 21.66

7 6.2593 30 25.052

4.3 Validation of equivalent aspect ratios

In Section 4.2, we derived the equivalent aspect ratios for
cylindrical and beads-chain fibers. In this section, we use the
methodology, proposed in Section 2 to validate our numerical
data for equivalent aspect ratios.

4.3.1 Validation for cylindrical fibers From Table 4, the
cylindrical fiber with r, = 6 has the equivalent axis ratio
1, = 4.8476 in our results, whereas r,; = 5.5582 in Cox’s
theory and r; = 4.3068 from Anczurowski’s fitted straight
line.

The evolution of ¢ and 8 are is shown in Fig.11, in which the
motion of an cylindrical fiber is obtained by the methodology
proposed in Section 2, while the motion of an ellipsoidal fiber
is evaluated from Jeffery’s analytical solution.
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Fig.11 Evolution of a cylindrical fiber with geometric axis

ratio r, = 6 and an ellipsoidal fiber motion with r, = 4.8476,
4.3068 and 5.5582: (a) change of ¢; (b) change of 6

In Fig.11, we can see that the motion of a cylindrical fiber
with r, = 6 matches that of an ellipsoidal fiber with r, =
4.8476, which is obtained from our result. We draw the
conclusion that our numerical data for the equivalent axis
ratios produces better results.

4.3.2 Validation for beads-chain fiber Similarly, we
evaluate the motion of a beads-chain fiber with r, = 6, and

compare it with that of an ellipsoidal fiber with r, = 5.5656,
obtained from our numerical data. The results are shown in
Fig.12. The motion of a beads-chain fiber is evaluated by our
numerical schemes, and the motion of an ellipsoidal fiber is
obtained from Jeffery’s analytical solution.

From Fig.12, we can see the beads-chain with the geometric
axis ratio r, = 6 has the same rotational movement as that of
the ellipsoidal fiber with r, = 5.5656, which verify that our
numerical data for equivalent axis ratios of beads-chain fibers
is accurate.
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Fig.12 Evolution of a beads-chain fiber with geometric axis
ratio r, = 6 and an ellipsoidal fiber with r, = 5.5656: (a)
change of ¢; (b) change of 6.

5 CONCLUSIONS AND FUTURE WORK

This paper presents a numerical approach to validate Jeffery’s
equation. The Finite Element Method is used to solve the
Navier-Stokes equation, so as to calculate the hydrodynamic
forces and torques on a fiber. Then the Newton-Raphson
method is performed to numerically obtain the angular
velocities, which zero the torques on the fiber. Lastly, a
Runge-Kutta approach is utilized to trace the fiber orientations
as a function of time. With the presented numerical methods,
we are able to study the motion of cylindrical and beads-chain
fibers, and present the numerical data for equivalent axis ratios
of both fiber types.

Further work will include the study of fiber motion in a non-
homogeneous flow, such as Poiseuille flow. A study of fiber-
fiber interaction in a non-dilute flow will also be part of our
future work. Meanwhile, we will derive the fiber motion with
the consideration of other physical characteristics of fluid
flow, such as weak fluid inertia and non-Newtonian effects.
Finally, we will extend our methodology to study flexible
fibers by modeling the fiber surface as a deformable boundary
in the finite element model.
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