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Abstract

Jeffery’s equation with diffusion is widely used to predict the motion of concentrated fiber suspen-
sions in flows with low Reynold’s numbers. Unfortunately, the evaluation of the fiber orientation
distribution can require excessive computation, which is often avoided by solving the related sec-
ond order moment tensor equation. This approach requires a ‘closure’ that approximates the
distribution function’s fourth order moment tensor from its second order moment tensor. This
paper presents the Fast Exact Closure (FEC) which uses conversion tensors to obtain a pair of
related ordinary differential equations; avoiding approximations of the higher order moment ten-
sors altogether. The FEC is exact in that when there are no fiber interactions, it exactly solves
Jeffery’s equation. Numerical examples for dense fiber suspensions are provided with both a Folgar-
Tucker (1984) diffusion term and the recent anisotropic rotary diffusion term proposed by Phelps
and Tucker (2009). Computations demonstrate that the FEC exhibits improved accuracy with
computational speeds equivalent to or better than existing closure approximations.

Keywords: B. Directional orientation, B. Rheological properties, D. Injection molding, Jeffery’s
equation with rotary diffusion

1. Introduction

The industrial demand has continued to increase for high-strength, low-weight, rapid production
parts such as those made of short discontinuous fiber composites with injection molding processes.
For effective design, it is essential to understand the dependance of the final part performance of
short-fiber injection molded composites with the variations in the microstructure due to the pro-
cessing (see e.g. [1, 2]). The Folgar and Tucker model of isotropic diffusion [3] for fiber interactions
within a suspension has been used for several decades to compute fiber orientation and has been
implemented to some extent within most related industrial and research computer simulations. Un-
fortunately, direct computations of the isotropic diffusion model are computationally prohibitive,
and most implementations employ the orientation tensor approach of Advani and Tucker [4] where
the moments of the fiber orientation are solved, thus indirectly quantifying the fiber orientation
distribution. The orientation tensor approach requires knowledge of the next higher-order moment
tensor, thus requiring some form of a closure. The hybrid closure of Advani and Tucker [4] has
been used extensively due to its computational efficiencies, but in implementation it will overpre-
dict the alignment state in simple shear flow [5]. Cintra and Tucker [6] introduced the class of
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the orthotropic closures, which result in significant accuracy improvements when compared to the
hybrid closure, but at an increase in computational costs.

With recent advances in part repeatability, the limitation of the isotropic diffusion model has
become apparent [7]. Recent anisotropic diffusion models [8, 9, 10, 11] propose new forms with
greater accuracies for modeling fiber collisions, but these anisotropic diffusion models pose a new set
of computational complications. In particular is the concern that nearly all of the fitted orthotropic
closures are obtained by fitting orientation information based on direct numerical solutions of
the Folgar-Tucker diffusion model. The exception is the orthotropic closures of Wetzel [12] and
VerWeyst [13] which were both constructed on distributions formed through the elliptic integral
form for orientations encompassing the eigenspace [6].

The Exact Closure of Montgomery-Smith et al. [14] presents an alternative to the classical
closure form, and provides an exact solution for pure Jeffery’s motion (i.e., the dilute regime). The
Exact Closure avoids the curve fitting process required to define fitted closures, by solving a set of
related ODEs of the fiber orientation. In the present paper, we extend the Exact Closure form to
systems of concentrated suspensions that are more relevant to modeling the processing of short-fiber
composites. Furthermore, we introduce the new Fast Exact Closure (FEC) that defines conversion
tensors that lead to a coupled system of ordinary differential equations that avoid costly closure
computations. The FEC form is derived for fiber collision models for both the isotropic diffusion
model of Folgar and Tucker and the recent anisotropic diffusion model of Phelps and Tucker [9].
Results presented will demonstrate the effectiveness of this alternative approach for modeling fiber
orientation, both for accuracy and for computational speed.

2. Fiber Motion Basics

Jeffery’s equation [15] has been used to predict the motion of the direction of axi-symmetric
fibers under the influence of a low Reynold’s number flow of a Newtonian fluid, whose velocity
field is u = u(x, t). The directions of the fibers is represented by the fiber orientation distribution
ψ = ψ(x,p, t), where p is an element of the orientation space, that is, the 2-dimensional sphere
S = {p = (p1, p2, p3) : p2

1 + p2
2 + p2

3 = 1}. Thus given a subset E of S, the proportion of fibers
whose direction is in E is given by

∫

E ψ(x,p, t) dp, where dp represents the usual integration over
S. In particular, an isotropic distribution is represented by ψ = 1/4π. The Jeffery’s equation for
the fiber orientation distribution is

Dψ

Dt
= −1

2∇p · ((Ω · p + λΓ · p− λΓ : ppp)ψ) (1)

Here Ω is the vorticity, that is, the anti-symmetric part ∇u − (∇u)T of the Jacobian of the
velocity field ∇u = (∂ui/∂xj)1≤i,j≤3, and Γ is the rate of strain tensor, that is, the symmetric
part ∇u + (∇u)T of the Jacobean of the velocity field. Also, D/Dt = ∂/∂t+ u ·∇ represents the

material derivative, and ∇p = (I − pp) ·
(

∂
∂p1

, ∂
∂p2

, ∂
∂p3

)

is the gradient operator restricted to the

sphere.
Equation (1) is modified to incorporate the rotary diffusion expressed by Bird et al. [16],

occasionally referred to as the generalized Fokker-Planck or the Smoluchowski equation [17], as

Dψ

Dt
= −1

2∇p · ((Ω · p + λΓ · p− λΓ : ppp)ψ) + ∆p(Drψ), (2)
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where Dr captures the effect of fiber interaction and depends upon the flow kinetics. Here ∆p =
∇p · ∇p represents the Beltrami-Laplace operator on the sphere. Folgar and Tucker [3] selected

Dr = CI γ̇ where γ̇ =
(

1
2Γ : Γ

)1/2
and CI is a constant that depends upon the volume fraction and

aspect ratio of the fibers.
Other authors have considered a wider class of diffusion terms. For example, Koch [10], and

Phelps and Tucker [9] considered anisotropic diffusion

Dψ

Dt
= −1

2∇p · ((Ω · p + λΓ · p− λΓ : ppp)ψ) + ∇p · (I − pp) ·Dr · ∇pψ (3)

where Dr is the anisotropic diffusion matrix, calculated as a function of ψ and ∇u (see, e.g., [9, 10]).
Since these are, in effect, partial differential equations in 5-spacial dimensions (3 for space and

2 for the orientation defined on a unit sphere), numerically calculating solutions can be rather
daunting with solutions taking days to weeks for simple flows. Hence Hinch and Leal [18] suggested
to recast the equation in terms of moment tensors. For example, the second and fourth moment
tensors are defined by

A =

∫

S
ppψ dp, A =

∫

S
ppppψ dp (4)

Then Jeffery’s equation (1) for the second order moment tensor can be expressed as

DA

Dt
= 1

2(Ω · A−A · Ω + λ(Γ · A+A · Γ) − 2λA : Γ) (5)

and the equations (2) and (3) with diffusion terms become

DA

Dt
= 1

2(Ω · A−A · Ω + λ(Γ ·A+A · Γ) − 2λA : Γ) + D[A] (6)

where D[A] for isotropic diffusion as expressed in equation (2) becomes

D[A] = Dr(2I − 6A) (7)

and subsequently the anisotropic diffusion of equation (3) (see [9]) is

D[A] = 2Dr − 2(trDr)A− 5(A ·Dr +Dr ·A) + 10A : Dr (8)

The difficulty with equations (5) and (6) is that they explicitly include the fourth order moment
tensor, and implicitly the higher order diffusion models of equation (8) include moments higher than
the second-moment. To circumvent this problem, various authors (for example, [18, 19, 20, 21, 6,
1, 22, 23, 24]) have proposed closures, that is, formulae to calculate the fourth order moment tensor
A from the second order moment tensor A. The mapping from A to A is not unique, thus closures
are only able to approximately obtain a higher order moment from the lower order moments. Most
closures are often constructed by obtaining the best-fit coefficients of for a polynomial by fitting
numerical data obtained by directly evaluating equation (2) using a finite element method to solve
equation (2) (for example, Bay [25]).
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3. The Fast Exact Closure

Verleye and Dupret [21] (see also [12, 13, 26, 27, 28]) noted that there is an exact closure for
Jeffery’s equation when the diffusion terms are not present, in the particular case that the fiber
orientation distribution is at some time isotropic. This exact closure is stated explicitly in [14] for
the scenario when the suspension is dilute. For the sake of labeling, the present closure retains the
reference Exact Closure, as it is exact for Jeffery’s equation without diffusion terms.

The Exact Closure may be directly computed by solving the elliptic integral forms presented
in equation (6), where A is computed from A using equations (38) and (39) as derived in [14].
This approach only gives the exact answer to equations (2) and (3) when Dr = 0 and when the
orientation is isotropic at some time. Nevertheless it is reasonable to suppose that the exact closure
should give a reasonable approximation in general, even when Dr 6= 0 as in Verweyst et al. [1, 13].
Their ORT closure is a polynomial approximation to the Exact Closure, and as we demonstrate
below, gives answers that are virtually indistinguishable from that of the Exact Closure.

The Fast Exact Closure (FEC) performs the Exact Closure in a computationally efficient man-
ner. A version of FEC is described in [14], but only when the diffusion terms are absent. In this
section we describe the FEC from an implementation perspective, and leave the full derivation to
the appendix.

The idea behind the FEC is the computation of two rank 4 tensors C and D, defined in equa-
tions (40) and (43), respectively, which we define as conversion tensors. These tensors convert
between DA/Dt and DB/Dt according to the formulae

DA

Dt
= −C :

DB

Dt
,

DB

Dt
= −D :

DA

Dt
(9)

as derived in equations (51) - (53). The orientation tensor A retains the classical meaning as
described in [4] and the tensor B turns out to be extremely useful for computations. B appears to
be a more abstract quantity to describe the degree of orientation much like the orientation tensor.
For example, when the orientation parameter B is given as Bij = δij this is analogous to saying that
the orientation is isotropic, whereas when one of the diagonal terms of B goes to 0, it indicates that
the orientation is perfectly aligned along the corresponding coordinate axis. Montgomery-Smith et
al. [14] provide a further discussion as to the meaning of the orientation parameter B

What makes everything work is the formula, proven in the appendix by equation (54), that for
any matrix M , we have

C : (B ·M +MT · B) = (trM)A+M · A+A ·MT − 2A : M (10)

where A and A satisfy equations (38) and (39).
The FEC present in this paper will be of the form:

DA

Dt
= −C : F (B) +G(A),

DB

Dt
= F (B) − D : G(A) (11)

where F (B) and G(A) will be given explicitly below. This is a general form that can be applied
to a the known diffusion models that fit the form of equation (2) or (3). The conversion tensors
C and D are defined later in this section, and in the appendix we provide a more mathematical
formula for them along with a proof of the above properties. It is important to note that C and D

may be computed directly from A and B in a rather fast manner, involving nothing more than the
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diagonalization and inversion of three by three symmetric matrices, general simple arithmetic, and
where appropriate invoking inverse trigonometric or inverse hyperbolic functions.

The FEC solves the coupled ODEs of (11) simultaneously. If the initial fiber orientation is
isotropic, then A = 1

3I and B = I at t = 0. When the initial fiber orientation is not isotropic, then
one can compute the initial condition for B from A by inverting equation (38), as described in [14].

It can be shown that the matrices A and B remain positive definite, simultaneously diagonal-
izable, and satisfy the equations trA = detB = 1 for all time.

For example, the FEC for the Jeffery’s equation with isotropic diffusion given in equation (2)
is given by:

DA

Dt
= 1

2C : [B · (Ω + λΓ) + (−Ω + λΓ) · B] +Dr(2I − 6A) (12)

DB

Dt
= −1

2(B · (Ω + λΓ) + (−Ω + λΓ) ·B) −DrD : (2I − 6A) (13)

and the FEC for Jeffery’s equation with anisotropic diffusion as shown in equation (3) is given by

DA

Dt
= 1

2C : [B · (Ω + λΓ) + (−Ω + λΓ) ·B] + 2Dr + 3(trDr)A− 5C : (B ·Dr +Dr ·B) (14)

DB

Dt
= −1

2(B · (Ω + λΓ) + (−Ω + λΓ) ·B) − D : (2Dr + 3(trDr)A) + 5(B ·Dr +Dr ·B) (15)

Using equation (10) it can be seen that equation (12) comes directly from equations (6) and (7),
and equation (13) comes from applying equation (43) to equation (12). Similarly for the anisotropic
diffusion model, this can be observed for equations (14) and (15).

Notice, for equations (12) and (13) and for equations (14) and (15), that the fourth-order
orientation tensor A does not appear. The equation of motion for the orientation is now reduced
to developing the relationship between A and B with that of C and D. The conversion tensors C

and D are both computed with respect to the basis of orthonormal eigenvectors of B. With respect
to this basis, the matrix B is diagonal with entries b1, b2 and b3, and A is diagonal with entries a1,
a2 and a3 where we constrain b1 ≤ b2 ≤ b3 which implies that a1 ≥ a2 ≥ a3.

If the eigenvalues b1, b2 and b3 are not close to each other, then C is the symmetric tensor
calculated using the formulae from equations (48) and (49) from the appendix

C1122 = a1−a2
2(b2−b1) C1111 = 1

2b
−1
1 − C1122 − C1133

C1133 = a1−a3
2(b3−b1) C2222 = 1

2b
−1
2 − C1122 − C2233

C2233 = a2−a3
2(b3−b2) C3333 = 1

2b
−1
3 − C1133 − C2233

Cijkk = 0 if i 6= j 6= k

(16)

If two or more of the eigenvalues are close to each other, then these equations can give rise to large
numerical errors, or even ‘divide by zero’ exceptions. So in this situation, we use different formulae
to compute C.

Suppose two of the eigenvalues are close to each other, for example, b1 = b0 + ǫ and b2 = b0 − ǫ,
where ǫ is small. Thus b0 = 1

2(b1+b2) and ǫ = 1
2(b1−b2). Define the quantity In from equation (50)
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and with equations (57) and (58) this quantity can be expressed as

In+1 =
2n− 1

2n(b0 − b3)
In −

√
b3

nbn0 (b0 − b3)
if n ≥ 1

I1 =
2√

b0 − b3
cos−1

(

√

b3
b0

)

if b0 > b3

I1 =
2√

b3 − b0
cosh−1

(

√

b3
b0

)

if b0 < b3

(17)

Then replace the first equation of equation (16) by

C1122 = 1
4I3 + 3

8I5ǫ
2 +O(ǫ4) (18)

If all three of the eigenvalues are almost equal, that is b1 = 1 + c1, b2 = 1 + c2, b3 = 1 + c3 with
|c1|, |c2|, |c3| ≤ ǫ, then it can be similarly shown that

C1122 = 1
10 − 3

28c1 − 3
28c2 − 1

28c3 + 5
48c

2
1 + 1

8c1c2 + 1
24c1c3 + 5

48c
2
2 + 1

24c2c3 + 1
48c

2
3

− 35
352c

3
1 − 45

352c
2
1c2 − 15

352c
2
1c3 − 45

352c1c
2
2 − 9

176c1c2c3

− 9
352c1c

2
3 − 35

352c
3
2 − 15

352c
2
2c3 − 9

352c2c
2
3 − 5

352c
3
3 +O(ǫ4)

(19)

with similar formulae for C1133 and C2233. The remaining entries of C are computed using the last
four equations from (16).

The rank 4 conversion tensor D given in equation (9) is defined through equation (43) with
respect to the basis of orthonormal eigenvectors of B, and can be simplified to

[

D1111 D1122 D1133
D2211 D2222 D2233
D3311 D3322 D3333

]

=

[

C1111 C1122 C1133
C2211 C2222 C2233
C3311 C3322 C3333

]−1

Dijij = Dijji =
1

4Cijij
if i 6= j Dijkk = 0 if i 6= j 6= k

(20)

Note that there is no reason to suppose that D is completely symmetric because in general Dijij

will not be the same as Diijj.
In performing the numerical calculations, it is more efficient when forming DA/Dt and DB/Dt

from equation (11) to calculate the right hand side in the coordinate system of the orthonormal
eigenvectors of B, and then convert back to the standard coordinate system when solving for A
and B.

For example, suppose B is any rank four tensor such that Bijkk = 0 if i 6= j 6= k, and Bijkl =
Bjikl = Bklij. Suppose also that N is a symmetric matrix. Then B : N can be calculated by first
defining the matrices MB and M̃B as

MB =

[

B1111 B1122 B1133
B1122 B2222 B2233
B1133 B2233 B3333

]

, M̃B =

[

0 B1212 B1313
B1212 0 B2323
B1313 B2323 0

]

(21)

then decompose
N = diag(n) + Ñ (22)

where n = (N11, N22, N33), and Ñ is the matrix of the off-diagonal elements of N . It follows that

B : N = diag(MB · n) + 2M̃B ◦ Ñ (23)

where for any matrices U and V we define the entrywise product (also known as the Hadamard or
Schur product) by (U ◦ V )ij = UijVij.
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3.1. The Reduced Strain Closure

Wang et al. [8] described a method that slows down the rate of alignment of the fibers, which
the paper calls the reduced strain closure model (RSC). The method is implemented by selecting
a number 0 < κ ≤ 1, which is identified as the rate of reduction. The authors [8] define the tensor

M =
3
∑

i=1

eieieiei (24)

where e1, e2, e3 are the orthonormal eigenvectors for A. The RSC replaces equations of the form

DA

Dt
= F (A) (25)

by
DA

Dt
= F (A) − (1 − κ)M : F (A) (26)

It turns out this form is simple to reproduce for the FEC. If equation (25) is represented by the
FEC

DA

Dt
= F (A,B),

DB

Dt
= G(A,B) (27)

then the effect of equation (26) is precisely modeled by the new FEC

DA

Dt
= F (A,B) − (1 − κ)M : F (A,B),

DB

Dt
= G(A,B) − (1 − κ)M : G(A,B) (28)

Finally, from a computational point of view, it should be noticed that if we are working in the basis
of orthonormal eigenvectors of B, then for any symmetric matrix N we have that M : N is simply
the diagonal part of N , that is, diag(N11, N22, N33).

3.2. Is the solution to FEC always physical?

By the phrase “the solutions stay physical” we mean that A stays positive definite with trace
one, that is, there exists a fiber orientation distribution ψ that satisfies equation (4). In fact, if A
ever ceases to become positive definite, then not only is the Exact Closure going to give the wrong
answer, it even ceases to have a meaning in that equation (38) which is used to define A in terms
of B cannot be solved. Thus another way to state “the solutions stay physical” is that B stays
positive definite and finite, that is, none of the eigenvalues of B become zero, and none of them
become infinite.

Theorem 1. The FEC solution to the isotropic diffusion equations (12) and (13) have global in
time physical solutions if Ω, Γ and Dr are bounded.

Theorem 2. The FEC solution to the anisotropic diffusion equations (14) and (15) have global
in time physical solutions if Dr is positive definite, and Ω, Γ, D(Dr)/Dt, Dr and 1/‖D−1

r ‖ are
bounded.

where the proofs for both theorems are given in the Appendix beginning with equation (65). Un-
fortunately Theorem 2 will not necessarily apply to the Koch model [10] nor to the Phelps-Tucker
ARD model [9], as there is no guarantee that 1/‖D−1

r ‖ is bounded nor, in the ARD case, that Dr

is positive definite, unless extra hypotheses are applied.
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3.3. Algorithm Summary

The algorithm to solve the FEC closure for the second-order orientation tensor A and the
second-order tensor B can be summarized as:

1. Initialize A and B, and define λ along with any constants needed for the diffusion model D [A]

2. At time ti, rotate the tensors A and B into the principal frame of B

3. When the eigenvalues are distinct, use equation (16) for C. Otherwise when two eigenvalues
are repeated, use equation (17) along with equation (18), or in the case when three eigenvalues
are repeated, use equation (19).

4. From C, compute D using equation (20) in the principal frame of B

5. Compute DA/Dt and DB/Dt using either equations (12) and (13) for isotropic diffusion
or equations (14), (15) and (28) for the anisotropic diffusion model, ARD-RSC. For the
symmetric rank four tensor contractions with rank two tensors, use equation (23) to reduce
the number of redundant multiplication operations.

6. Rotate DA/Dt and DB/Dt into the flow reference frame, and extrapolate A (ti+1) and
B (ti+1) from time ti using any standard ODE solver.

There are a number of coding issues we encountered, and we feel it will be helpful to share as
it will aid others in their computational implementations.

• There is a choice to compute the basis of orthonormal eigenvectors from either A or B, where
in theory these should be identical. We compute the basis from B, arguing that the quantity
B is somehow more ‘fundamental’ and A is ‘derived’ from B, which is true in the absence of
diffusion.

• We solve a ten dimensional set of ODEs, five for A, and five for B, where one of the components
of both A and B can be obtained, respectively, from the relationships trA = 1 and detB = 1.

• When computing A from the orthonormal eigenvector basis of B, it is important to force the
off diagonal entries to be non-zero to limit numerical drifting. In our studies, we found that
failing to do this could cause an adaptive ODE solver to completely freeze in select scenarios.

• We set the ODE solver to work with a relative tolerance of 10−5, and choose to use equa-
tions (18) or (19) when the eigenvalues were within 10−4 of each other. This should cause
C to be computed with an accuracy of about 10−8 when using equations (16), and nearly
machine precision when using equations (18) or (19).

4. Numerical Results

Results are presented to demonstrate the accuracy improvements from employing the FEC
closure, and just as important to demonstrate the computational speed advances over the similarly
accurate orthotropic closures. In the present examples, all flows have an initial isotropic orientation
state designated by A11 = A22 = A33 = 1/3 and B11 = B22 = B33 = 1, with all other components
of A and B being zero. The accuracy of the closure does not depend on the initial orientation state,
the isotropic orientation state is chosen for uniformity. The equations of motion are solved using the
FEC closure for A and B from equations (12) and (13) for isotropic diffusion or from equations (14),
(15) and (28) for the anisotropic rotary diffusion model with the reduced strain closure ARD-RSC
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from Phelps and Tucker [9]. For comparison, the classical equations of motion for the second-order
orientation tensor A requiring a curve-fitted closure for the fourth-order orientation tensor A, are
solved using equations (6) and (7) for Folgar-Tucker diffusion and equations (6), (8) and (25) for
the ARD-RSC diffusion model. Results are compared to solutions obtained using the Spherical
Harmonic approach [29] for solving the full distribution function equations (2) and (3). It has
been demonstrated in [29] that solutions using the Spherical Harmonic approach are only limited
in their accuracy by machine precision and require considerably less computational effort than
solutions using the control volume approach of Bay [25]. Although a great reduction in speed and
an advancement in accuracy, the Spherical Harmonic approach still requires more effort than the
orientation tensor approach, nor does it readily lend itself to an applicable form for coupling with
commercial FEA solvers. We select three commonly employed closures for comparisons. The first is
the classical Hybrid closure of Advani and Tucker [4] is selected as it is regularly used in commercial
and research codes due to its computational efficiency and ease of implementation. The second is
an orthotropic closure, whose class of closures has found increasing use due to their considerable
accuracy improvements over the Hybrid closure. In our study we select the ORT closure presented
by VerWeyst and Tucker [1] based on the Wetzel closure [12]. Our third closure is that of the IBOF
from Chung and Kwon [22] which is claimed to be a more computationally efficient orthotropic
closure as it uses the invariants of A as opposed to the eigenvalues of A thus avoiding costly tensor
rotations.

4.1. Results: Simple Shear Flow

The first example is that of a pure shearing flow, given by v1 = Gx3 and v2 = v3 = 0.
Pure shearing flow is commonly employed (see e.g., [6, 22, 30]) to demonstrate a particular closure
problem due to the oscillatory nature of alignment inherent to the Jeffery fiber orbits. Two scenarios
are presented, the first of the Folgar-Tucker isotropic diffusion model in equation (2) where Dr =
CI γ̇, and the second scenario for the ARD-RSC anisotropic diffusion model.

4.1.1. Simple Shear Flow Orientation

In industrial simulations, the Folgar-Tucker isotropic diffusion model typically has interaction
coefficients that range from CI = 10−3 to CI = 10−2. The effective fiber aspect ratio ranges from
5 to 30 (ae ≃ 1.4 × ar, where ar is the aspect ratio of cylindrical fibers), which corresponds to a
shape correction factor ranging from λ = 0.96 to λ = 0.999. Two simulation results using isotropic
diffusion are presented in Figures 1(a) and (b), the first is for CI = 10−3 with λ = 0.99 and the
later for CI = 10−2 with λ = 0.95. Results for the IBOF closure are not shown as they are nearly
graphically indistinguishable from the ORT closure results. It is important to observe that the ORT
and the FEC closure yield results that are graphically indistinguishable and reasonably close to the
orientation state predicted from the numerically exact Spherical Harmonic solution. Conversely,
the orientation results from the Hybrid closure tend to over predict the the true orientation state. It
is important to point out the apparent oscillatory nature of the transient solution for the Spherical
Harmonic results when CI = 10−3 with λ = 0.99, which occurs to a lesser extent for CI = 10−2.
These oscillations are expected due to the low amount of diffusion present. Equally important is
to notice that the oscillations from the FEC closure, as well as the ORT, both damp out to the
same steady state value. Note also that the FEC does not oscillate excessively for either of the
isotropic flow conditions presented, which was a problem that plagued the early orthotropic closures
(see e.g., [6] and [31]) and the early neural network closures [32]. There remains room for further
accuracy improvements (see e.g., [33] for several preliminary higher accuracy closures). However,
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it is speculated based upon the discussion in Jack and Smith [34] that such improvements will
be slight when solving the second-order moment equations, and higher order moment simulations,
such as those that use sixth-order closures (see e.g., [24]) may need to be considered for significant
accuracy improvements.

The Folgar-Tucker model has been used for decades, but tends to overstate the rate of align-
ment during the transient solution (see e.g., [7]). The ARD-RSC model [9] seeks to address these
limitations, but few studies have focused on this new diffusion model and the dependance of com-
puted results on the choice of closure. In the ARD-RSC model, the rotary diffusion coefficient of

Folgar and Tucker isotropic diffusion model (Dr = CI γ̇ where γ̇ =
(

1
2Γ : Γ

)1/2
) is replaced by an

anisotropic diffusion coefficient expressed by

Dr = b1γ̇I + b2γ̇A+ b3γ̇A
2 + 1

2b4Γ + 1
4b5γ̇

−1Γ2 (29)

where
(b1, b2, b3, b4, b5) = (1.924 × 10−4, 5.839 × 10−3, 4.0 × 10−2, 1.168 × 10−5, 0) (30)

The ARD-RSC model serves as an excellent example of the effectiveness of the FEC approach for
solving the tensor form of orientation as the ARD-RSC model will yield orientation states that are
considerably different than that of the Folgar-Tucker model. Results from the various closures and
the spherical harmonic results are presented in Figure 2 for the ARD-RSC flow with κ = 1/30. The
value of κ = 1/30 is taken from the results presented in Phelps and Tucker [9], which was based
on their experimental observations. For a fiber aspect ratio of ∼ 5, corresponding to λ = 0.95,
each of the investigated closures produces graphically similar results. During the initial flow stages,
the Hybrid tends to over predict alignment, whereas the ORT and the FEC tend to under predict
alignment. As steady state is attained, the FEC and the ORT yield nearly identical results, both
of which over predict A11 in the final orientation state whereas the Hybrid yields a reasonable
representation of the orientation. For a long fiber, corresponding to λ → 1, the trends are similar
to those of the lower aspect ratio fibers, but in this case the FEC and the ORT better represent
the final orientation state relative to the Hybrid.

4.1.2. Orthotropic Closure Errors

The ORT is a polynomial approximation to the Exact Closure, as demonstrated in the preceding
section, and it is not surprising that the two approaches yield graphically indistinguishable results
for many of the flows investigated. On closer inspection of the transient solution of the ARD-RSC
model for κ = 1/30 and λ = 1 there is a slight difference. This difference is shown in Figure 3(a)
where a closeup view is provided of the A11 component for the flow times of 800 ≤ Gt ≤ 1, 200.
These results indicate how well the fitting was performed in the construction of the ORT. As the
ORT is an approximation of the Exact Closure of Montgomery-Smith et al. [14] for pure Jeffery’s
flow, it is of interest to determine whether the slight deviation comes from the Jeffery’s component or
the diffusion component of equation (6). To this end, we performed a comparison for the derivative
of A computed in two different ways. First, for each point in time t, we computed A(t) and B(t)

using the FEC method. Then we computed four quantities: DAFEC, Diff

Dt which contains the terms

from the right hand side of equation (14) that explicitly include Dr,
DAFEC, Jeff

Dt which contains the

terms from the right hand side of equation (14) that do not involve Dr,
DAORT, Diff

Dt the right hand

side of equation (8), and DAORT, Jeff

Dt the right hand side of equation (6) when D(A) is set to zero.
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In the latter two cases A is computed using the ORT closure. The error is then defined as

EDiffusion =

√

√

√

√

3
∑

i=1

3
∑

j=1

(

DAFEC, Diff

ij

Dt
−
DAORT, Diff

ij

Dt

)2

(31)

EJeffery =

√

√

√

√

3
∑

i=1

3
∑

j=1

(

DAFEC, Jeff

ij

Dt
−
DAORT, Jeff

ij

Dt

)2

(32)

Each of the two errors are plotted in Figure 3(b). It is clear from the figure that although the
ORT’s derivative calculation from the diffusion component is not zero, it is minor in comparison
to the error from the Jeffery’s part of the orientation tensor equation of motion. This error is only
a rough indication of the sources of error, but values of 0.04% at a given moment in flow time can
account for an error as large as 40% for A for the flow times on the order 1,000. Since the errors
from each of the possible sources probably do not drive the error in the solution toward the same
direction, the total error would be expected to be less than the upper bound of 40%, where in
reality the error is closer to 0.9% as steady state is approached.

Since the ORT and FEC differ by about 0.9%, it begs the question as to which is more accurate
in computing the true exact closure. While the FEC in theory should exactly compute the exact
closure, it is possible that numerical errors creep into the FEC. To test for this, we performed a
consistency check. After finding the solution A(t) and B(t) using the FEC, we calculated

EExact =

√

√

√

√

2
∑

i=1

3
∑

j=1

(A(B)ij −Aij)
2 (33)

where A(B) was computed using equation (38). This calculation was performed by diagonalizing
B, applying the elliptic integrals in equation set (47) using the software package [35], and then
performing the reverse change of basis. The results for the ARD-RSC model with κ = 1/30 and
λ = 1.00 show an error of less than 10−8 throughout the transient solution, thus suggesting the
implementation as presented in this paper for the FEC is quite accurate.

4.2. Results: Orientation Error Summary

To quantify the errors observed in Figures 1(a) and (b) for the isotropic diffusion models, a
series of fourteen flows are studied as outlined in table 1 where λ = 1 for each of the flows. The
solution is obtained using the classical closure methods and the FEC closure results are compared to
solutions obtained from the Spherical Harmonic approach. To quantify the error, the time average
of the Frobenius Norm of the difference between the true solution ASpherical

ij (t) and the approximate
solution obtained from a closure AClosure

ij (t) is computed as

EClosure =
1

tf − t0

∫ tf

t0

√

√

√

√

3
∑

i=1

3
∑

j=1

∣

∣

∣
ASpherical

ij (t) −AClosure
ij (t)

∣

∣

∣

2
dt (34)

where t0 is the initial time where the fiber orientation is isotropic and tf is the time when the steady
state is attained, which in this example will be defined when the magnitude of the largest derivative
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of the eigenvalues of A is less than G × 10−4. This can be expressed as the smallest moment in

time when the following is satisfied
(

maxi∈{1,2,3} |
DA(i)

Dt (t)|
)

≤ G × 10−4. The quantitative error

metric in equation (34) yields a value for the simple shear flow of Figure 1(b) for the FEC, ORT
and Hybrid closures of, respectively, 4.74 × 10−2, 4.85 × 10−2 and 1.75 × 10−1. As the objective is
to compare the relative accuracy improvements between the FEC closure and the existing closures
we will normalize the error metric in equation (34) as

εClosure ≡ EClosure

min
Closure

(

EClosure

) (35)

where the closure with the greatest accuracy will have a value of εClosure = 1, and the remaining
closures will have a value of εClosure in excess of 1. For each of the flows studied, the normalized
error of equation (35) is tabulated in Table 1 for the FEC, ORT, IBOF and the Hybrid closures. In
each of the flows considered, the FEC performs as well as or better than the orthotropic closures.

4.3. Results: Combined Flow

A classical flow to demonstrate the effectiveness and robustness of a closure is that of the
combined flow presented in Cintra and Tucker [6]. This flow is often selected as the orientation
state crisscrosses the eigenspace of possible orientations. The combined flow begins with pure shear
in the x1 − x2 direction for 0 ≤ Gt < 10 defined by the velocity field v1 = Gx2, v2 = v3 = 0.
The flow then transitions to shearing flow in the x2 − x3 plane with stretching in the x3 direction
during the time 10 ≤ Gt < 20 defined by the velocity field v1 = −1/20Gx1, v2 = −1/20Gx2 +Gx3

and v3 = 1/10Gx3. The flow then transitions to a flow with a considerable amount of stretching
in the x1 direction with a reduced amount of shearing in the x2 − x3 plane for 20 ≤ Gt defined
by the velocity field v1 = Gx1, v2 = −1/2Gx2 +Gx1 and v3 = −1/2x3. The times where the flow
transitions are chosen to prevent the orientation from attaining steady state, thus any error in the
transient solution will be propagated to the next flow state. As observed in Figure 4 for flow results
from the Folgar-Tucker model with CI = 10−2 and λ = 1, the ORT and the FEC again yield similar
results. This is significant as it further demonstrates the robustness and the accuracy of the FEC.

4.4. Results: Center-gated Disk Flow

The final flow investigated is that of the center-gated disk, a typical flow condition in industrial
processes [1, 36]. The flow enters the mold through the pin gate and flows radially outward, where
the velocity is a function of both the gap height 2b and the radial distance from the gate r. The
velocity gradient for a Newtonian fluid can be represented by [6]

vr =
3Q

8πrb

(

1 −
(z

b

)2
)

, vθ = vz = 0 (36)

∂vi

∂xj
=

3Q

8πrb





− 1
r

“

1− z2

b2

”

0 − 2
b

z
b

0 1
r

“

1− z2

b2

”

0

0 0 0



 (37)

where z is the gap height location between the mold walls, b is half the gap height thickness, and
Q is the flow rate. Orientation results are presented in Figure 5 for a gap height of z/b = 4/10 for
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isotropic diffusion with CI = 10−2 and λ = 1. Again, the Hybrid overshoots the actual orientation
state, whereas the ORT and the FEC behave in a graphically identical fashion. This last result
further demonstrates the robustness of the FEC approach. Similar tests were performed for gap
heights of z/b = 0, 1/10, 2/10, . . . , 9/10 and similar conclusions were observed at all gap heights.

4.5. Results: Computational Time Enhancement

An additional goal for any new closure is that of reducing the computational requirements
for numerical solutions. Simulations are performed using in-house developed single threaded code
using Intel’s FORTRAN 90 compiler version 11.1. Computations are solved on a standard desktop
with an Intel i7 processor with 8 GB of Ram. The solution of the ORT has been studied by the
investigators for several years, and a reasonably efficient algorithm has been developed. Solutions
for the IBOF were made using the FORTRAN 90 code discussed in Jack et al. [30].

Notice from Equations (12) and (13) that the operations C : [· · · ] and D : [· · · ] are independent of
coordinate frame. As we explained in equation (23), in the principal frame there are a considerable
number of terms in both C and D that are zero that are known prior to any calculations, and
thus operations involving 0 can be avoided in the coding. In addition, computing DA/Dt and
DB/Dt in the principle reference frame and then rotating the resulting 3× 3 tensors into the local
reference frame will be more efficient than rotating the 3× 3× 3× 3 tensors C and D into the local
reference frame and then computing DA/Dt and DB/Dt. All computations of the FEC utilize
this characteristic, and thus greatly reduce the computational efforts. In addition, redundant
calculations from Equations (12) and (13) are closely followed and performed only once. These
computations are particularly frequent in the double contractions of the fourth-order tensors with
the second-order tensors.

In the first study, computations were performed for the previous closure operations for the
ORT and the Hybrid using algorithms similar to implementations discussed in the literature. In
studies using an adaptive step size solver, solutions for the IBOF took nearly 10 times that of the
ORT, whereas for the fixed step size the two closures required similar computational efforts. To
avoid any computational comparisons introduced by an adaptive step size solver, computations
were performed using a fixed step-size fourth-order Runge-Kutta (R-K) solver with a very small
step size of ∆Gt = 10−4. Computational times are tabulated in Table 2 for both CPU time
and normalized time. Normalized time is defined based off of the often employed Hybrid closure
using the standard implementation for the Hybrid closure with the very small step size. The ORT
required nearly 770 seconds, a factor of 31 times greater than that of the Hybrid. Conversely, the
FEC required only 26 seconds, a slight increase in effort beyond the Hybrid, which required 25
seconds. This is very striking as the Hybrid closure is often selected in research and industrial
codes due to its computational efficiency, while recognizing the sacrifice in computational accuracy.
This is no longer the case with the FEC as it has the same accuracy of the orthotropic closures
while providing computational speeds nearly identical to that of the Hybrid closure.

In the process of developing the FEC algorithm, it was observed that many redundant operations
existed in the implementation of the ORT and the Hybrid closures. For existing implementation of
the classical closures, no special consideration was given to the A : Γ term, but since the rank four
tensor A is symmetric, equation (23) can be used to reduce the number operations of the double
contraction to that of a simple rank two tensor operations for both the hybrid closure and the
ORT closure implementations. For the ORT, the computational problem can be further simplified
by constructing the second-order tensor DA/Dt in the principal frame, and then performing the
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tensor rotation back into the reference frame. Thus the costly rotations of the fourth-order tensor
A are avoided. These optimized results for the Hybrid and the ORT are shown in Table 2, and it
is clear that the computational times were greatly reduced. The optimized Hybrid implementation
reduced the computational time to 30% of the original time, whereas the ORT implementation
improved by over an order of magnitude. With these additional computational advances the ORT
appears to be a more viable alternative to the Hybrid, but the FEC still has similar computational
requirements. It is expected that with further studies, the FEC algorithm could be improved to
further reduce its computational times.

5. Conclusion

The Fast Exact Closure is a robust, computationally efficient, approach to solve the fiber orien-
tation equations of motion for the orientation tensors. This unique approach does not require any
form of curve fitting based on orientation data obtained from numerical solutions of the full fiber
orientation distribution. The results presented demonstrate that the FEC is as accurate and robust
as the existing industrially accepted closures, while enjoying computational speeds equivalent to
the industrial form of the hybrid closure.
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Appendix: Justification and Proofs

By [14], the Exact Closure is this. Given A, compute the symmetric matrix B by solving

A = A(B) = 1
2

∫ ∞

0

(B + sI)−1 ds
√

det(B + sI)
(38)

It was shown in [14] that B is unique with this property. Then compute A using the formula

A = 3
4

∫ ∞

0

sS((B + sI)−1 ⊗ (B + sI)−1) ds
√

det(B + sI)
(39)

Here S represents the symmetrization of a rank 4 tensor, that is, S(B)ijkl is the average of Bmnpq

over all permutations (m,n, p, q) of (i, j, k, l).
It can be shown that the following two statements are equivalent:

1. Equation (38) holds for all time.

2. Equation (38) holds at t = 0, and equation (9) holds for all time, where

C = 3
4

∫ ∞

0

S((B + sI)−1 ⊗ (B + sI)−1) ds
√

det(B + sI)
(40)
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Furthermore, it can be shown for every symmetric matrix M that

tr(B−1 ·M) = 2 tr(C : M) (41)

and hence it can be seen that tr(DA/Dt) = 0 if and only if tr(B−1 · (DB/Dt)) = 0, that is, trA
stays constant if and only if detB stays constant.

Next, we have

The linear map on symmetric matrices M 7→ C : M is invertible (42)

that is, there exists a rank 4 tensor D such that

C : D : M = D : C : M = M for any symmetric matrix M (43)

Indeed if we define the six by six matrix

C =







C1111 C1122 C1133 2C1112 2C1113 2C1123
C2211 C2222 C2233 2C2212 2C2213 2C2223
C3311 C3322 C3333 2C3312 2C3313 2C3323
2C1211 2C1222 2C1233 4C1212 4C1213 4C1223
2C1311 2C1322 2C1333 4C1312 4C1313 4C1323
2C2311 2C2322 2C2333 4C2312 4C2313 4C2323






(44)

then D can be calculated using the formula







D1111 D1122 D1133 D1112 D1113 D1123
D2211 D2222 D2233 D2212 D2213 D2223
D3311 D3322 D3333 D3312 D3313 D3323
D1211 D1222 D1233 D1212 D1213 D1223
D1311 D1322 D1333 D1312 D1313 D1323
D2311 D2322 D2333 D2312 D2313 D2323






= C−1 (45)

Dijkl = Djikl = Dijlk (46)

In the basis of orthonormal eigenvectors of B, since Cijkk = 0 whenever i 6= j 6= k, this reduces to
equation (20).

Next, if B is diagonal, then A is diagonal with entries

a1 = 1
2

∫ ∞

0

ds

(b1 + s)3/2
√
b2 + s

√
b3 + s

a2 = 1
2

∫ ∞

0

ds√
b1 + s(b2 + s)3/2

√
b3 + s

a3 = 1
2

∫ ∞

0

ds√
b1 + s

√
b2 + s(b3 + t)3/2

(47)

and

C1111 = 3
4

∫ ∞

0

ds

(b1 + s)5/2
√
b2 + s

√
b3 + s

C1122 = 1
4

∫ ∞

0

ds

(b1 + s)3/2(b2 + s)3/2
√
b3 + s

C2222 = 3
4

∫ ∞

0

ds√
b1 + s(b2 + s)5/2

√
b3 + s

C2233 = 1
4

∫ ∞

0

ds√
b1 + s(b2 + s)3/2(b3 + s)3/2

C3333 = 3
4

∫ ∞

0

ds√
b1 + s

√
b2 + s(b3 + t)5/2

C1133 = 1
4

∫ ∞

0

ds

(b1 + s)3/2
√
b2 + s(b3 + s)3/2

(48)
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all the other coefficients of C being zero. Furthermore

C : I = 1
2B

−1 (49)

Equations (16) now follow by an easy calculation. Equations (18) and (19) are obtained by ex-
panding the fourth equation of (48) using Taylor’s series, where

In =

∫ ∞

0

ds

(b0 + s)n
√
b3 + s

(50)

The proofs of various details now follow.

Proof of equations (9) and (40): Write Ȧ and Ḃ for DA
Dt and DB

Dt respectively. Use the formulae

D

Dt
B−1 = −B−1 · Ḃ ·B−1 and

D

Dt
detB = tr(B−1 · Ḃ) detB (51)

to obtain

Ȧ = −1
2

∫ ∞

0

(B + sI)−1 · Ḃ · (B + sI)−1 ds
√

det(B + sI)
− 1

4

∫ ∞

0

[(B + sI)−1 : Ḃ] (B + sI)−1 ds
√

det(B + sI)

= −C : Ḃ

(52)

since for any symmetric matrix K we have

S(K ⊗K) : Ḃ = 1
3K · Ḃ ·K + 2

3(K : Ḃ)K (53)

Proof of equation (10): For any invertible symmetric matrix K

S(K−1K−1) : (K ·M) = S(K−1K−1) : (MT ·K) = 1
3((trM)K−1 +M ·K−1 +K−1 ·MT ) (54)

Setting K = B + sI, we multiply both sides by 3/(4
√

det(B + sI)), and integrate with respect to
s from zero to infinity, to obtain equation (10).

Proof of equations (17) from (50): To compute I1, use the formulae

d

ds
cos−1

(

√

b3 + s

b0 + s

)

= −
√
b0 − b3

2(b0 + s)
√
b3 + s

(55)

d

ds
cosh−1

(

√

b3 + s

b0 + s

)

= −
√
b3 − b0

2(b0 + s)
√
b3 + s

(56)

Next, integrating by parts, we obtain

In = −
√
b3

2bn0
+
n

2

∫ ∞

0

√
b3 + s ds

(b0 + s)n+1
(57)

and simple algebra gives
∫ ∞

0

√
b3 + s ds

(b0 + s)n+1
= In + (b3 − b0)In+1 (58)
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Proof of equation (41): For any positive definite matrix X, if

A(X) = 1
2

∫ ∞

0

(X + sI)−1 ds
√

det(X + sI)
(59)

then

tr(A(X)) = 1
2

∫ ∞

0

tr((X + sI)−1) ds
√

det(X + sI)
= −

∫ ∞

0

d

ds

(

1
√

det(X + sI)

)

ds =
1√

detX
(60)

If tr(B−1 ·M) = α, then (remembering that detB = 1) we have det(B + ǫM) = 1 + ǫα+O(ǫ2) as
ǫ→ 0. Hence 1− 1

2ǫα+O(ǫ2) = tr(A(B+ǫM)) = 1−ǫ tr(C : M)+O(ǫ2). Therefore tr(C : M) = 1
2α.

Proof of equation (42): This follows because

M is a symmetric non-zero matrix ⇒M : C : M > 0 (61)

and hence M 6= 0 ⇒ C : M 6= 0.
To see this, suppose that K is a positive definite three by three matrix, and let k1, k2 and k3

be its eigenvalues. Then in the basis of corresponding orthonormal eigenvalues of K, we have that
for any non-zero symmetric M

M : S(K ⊗K) : M = 1
3

(

3
∑

i=1

kiMii

)2

+ 2
3

3
∑

i,j=1

kikjM
2
ij > 0 (62)

Apply this to K = (B + sI)−1, multiply by (det(B + sI))−1/2, and then integrate over s to obtain
M : C : M > 0.

Proof of equation (49): Without loss of generality B is diagonal. Hence we need to prove statements
such as C1111 + C1122 + C1133 = 1

2b
−1
1 when C satisfies equation (48). But

C1111 + C1122 + C1133 = −1
2

∫ ∞

0

d

ds

(

1

(b1 + s)3/2
√
b2 + s

√
b3 + s

)

ds

= 1
2b

−3/2
1 b

−1/2
2 b

−1/2
3

(63)

The result follows since b1b2b3 = 1.

Proof of equation (28): From equation (9), we see that the RSC version of equation (27) is equa-
tion (28) and

DB

Dt
= G(A,B) − (1 − κ)D : M : F (A,B) (64)

Since D : F (A,B) = G(A,B), it follows that all we need to show is D : M : F (A,B) = M : D :
F (A,B). This is easily seen by working in the basis of orthonormal eigenvectors of B, noticing that
then M : N is simply the diagonal part of N , and applying equation (23).

Proof of Theorem 1: It follows from detB = 1 that the only way that the solutions can become
non-physical is if B ‘blows up,’ that is, if one or more of the eigenvalues of B become infinite in
finite time. (Also, [37, Theorem 1.4] can be used to show that the finiteness of the eigenvalues of
B imply the differential equations have a unique solution.)
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Substituting M = I into equation (10), we obtain C : B = 3
2A, that is,

D : A = 2
3B (65)

Take the trace of equation (13) and use equation (65), to obtain

D

Dt
trB ≤ c(‖Ω‖ + ‖Γ‖ +Dr)(trB) − 2Dr(I : D : I) (66)

for some universal constant c > 0. Here ‖ · ‖ denotes the spectral norm of a matrix, and we have
used the inequality tr(X · Y ) ≤ ‖X‖ tr Y whenever Y is positive definite. By equation (61), we
have I : D : I = M : C : M ≥ 0, where M = D : I, and hence

D

Dt
trB ≤ c(‖Ω‖ + ‖Γ‖ +Dr)(trB) (67)

Now we can apply Gronwall’s inequality [37, Chapter 2.1.1] (in Lagrangian coordinates) to obtain

trB ≤ (trB0)e
ctL (68)

where L is an upper bound for ‖Ω‖ + ‖Γ‖ +Dr, and B0 is the value of B at t = 0. Therefore trB
remains finite, and since B is positive definite, no eigenvalue of B blows up to infinity in finite time.

Proof of Theorem 2: Note that the positive definiteness of Dr, and the boundedness of Dr and
1/‖D−1

r ‖ guarantee that the ratio of trB and Dr : B is bounded from above and below. From
equation (15), and using equation (65)

D

Dt
(Dr : B) ≤ c

(

‖Ω‖ + ‖Γ‖ + ‖Dr‖ +

∥

∥

∥

∥

D(Dr)

Dt

∥

∥

∥

∥

)

(Dr : B) − 2(Dr : D : Dr) (69)

The rest of the proof proceeds by a similar argument as above.
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Flow # v1 v2 v3 CI λ εFEC εORT εIBOF εHybrid

1 Gx1 Gx2 −2Gx3 10−3 1 1 2.06 1.28 76.2
2 2Gx1 −Gx2 −Gx3 10−3 1 1.03 1.05 1 25.8
3a Gx3 0 0 10−3 0.99 1 1.02 1.02 3.69
3b Gx3 0 0 10−3 1 1 1.02 1.01 3.28
4 −Gx1 + 10Gx2 −Gx2 2Gx3 10−3 1 1 2.25 1.36 12.9
5 −Gx1 +Gx2 −Gx2 2Gx3 10−3 1 1.02 1 1.23 22.6
6 Gx1 + 2Gx3 Gx2 −2Gx3 10−2 1 1 1.01 1.08 3.57
7 Gx1 + 2.75Gx3 Gx2 −2Gx3 10−2 1 1 1.02 1.05 2.98
8 Gx1 + 1.25Gx3 Gx2 −2Gx3 10−2 1 1.02 1 1.12 3.85
9 −Gx1 + 10Gx3 Gx2 0 10−2 1 1.03 1 1.03 1.65
10 −Gx1 +Gx3 Gx2 0 10−2 1 1.01 1 1.04 2.29
11 2Gx1 + 3Gx3 −Gx2 −Gx3 10−2 1 1.04 1.04 1 2.52
12 −Gx1 + 3.75Gx2 Gx2 2Gx3 10−2 1 1 1.03 1.06 2.03
13 −Gx1 + 1.5Gx2 −Gx2 2Gx3 10−2 1 1.00 1 1.01 2.34
14a Gx3 0 0 10−2 0.99 1 1.00 1.03 4.14
14b Gx3 0 0 10−2 1 1 1.00 1.02 3.90

Table 1: Flows used, and the resulting error computation in computing the second-order orientation tensor A.

Closure CPU Time Normalized Time

Hybrid - Original 25 1
Hybrid - Optimized 6.9 0.3

ORT - Original 770 31
ORT - Optimized 21 0.8

FEC 26 1.0

Table 2: Normalized Computational Times
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Figure 1: Transient Solution for selected components of A for simple shear flow under isotropic diffusion (a) CI = 10−3

and λ = 0.99 and (b) CI = 10−2 and λ = 0.95.
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Figure 2: Transient Solution for selected components of A for simple shear flow under anisotropic rotary diffusion
(ARD-RSC) (a) κ = 1/30 and λ = 0.95 and (b) κ = 1/30 and λ = 1.0.
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Figure 3: Anisotropic rotary diffusion results, simple shear κ = 1/30 and λ = 1.0 (a) Selected time range of for A11

(b) Transient error in derivative computation for the fitted orthotropic closure ORT compared to FEC.
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Figure 4: Transient solution for selected components of A for mixed flow from the Folgar-Tucker model with CI = 10−2

and λ = 1.0.
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Figure 5: Transient solution for selected components of A for center-gated disk flow from the Folgar-Tucker model
with CI = 10−2 and λ = 1.0 for r/b = 4/10.
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